New York City Interscholastic Mathematics League Senior A Division Contest Number 1

PART I	SPRING	2006	CONTEST 1	TIME: 10 MINUTES	
S06A1	The price of Endrun's stock increased by 20% at the end of the first year, then by 25% of the new price at the end of the second year and then by 30% of the second year's price at the end of the third year. In the fourth year the stock lost 80% of its third year price. If k represents the ratio of the price of the stock at the end of the fourth year to the original price of the stock, compute k .				
S06A2	A rectangular such that the other paper.	rectangular sheet of paper measures 9 inches by 12 inches. The paper is folded once uch that the opposite vertices share a common point. Compute the length of the fold in the paper.			
PART II	SPRIM	IG 2006	CONTEST 1	Time: 10 Minutes	
S06A3	Compute the	sum of the roots	s of the equation:	x-3 -5 =3.	
S06A4	If $a \neq b$ and a, b, x, y are positive integers, compute, in terms of a and b , the number of ordered pairs (x, y) that satisfy: $x^2 + y^2 + 2xy - (a+b)x - (a+b)y + ab = 0$.				
PART III	SPR	ING 2006	Contest 1	Time: 10 Minutes	
S06A5	A lottery consists of picking five numbers out of 54 distinct numbers. Five "winning" numbers are chosen randomly. First prize is won by getting all five winning numbers. Second prize is won by getting exactly four out of five. Compute the ratio of the probability of winning a second prize to the probability of winning a first prize.				
\$06A6	$P(x)$ is a polynomial with integral coefficients. When $P(x)$ is divided by $x-3$, the remainder is 25. When $P(x)$ is divided by $x+3$, the remainder is 7. Compute the remainder when $P(x)$ is divided by x^2-9 .				
Answers:	S06A1	$\frac{39}{100}$ or .39			
	S06A2	11.25 or $\frac{45}{4}$			
	S06A3	12			
	S06A4 S06A5	a + b - 2 245			
	S06A6	3x + 16			

SPRING 2006 Solutions

S06A1 Let the original price =\$100. The current price = \$100(100+20)%(100+25)%(100+30)%(100-80)% = 100(1.2)(1.25)(1.3)(.2) = \$39 \$39/\$100=39/100 or .39

S06A2 x E

 $2x = \frac{45}{4} = 11.25$ inches

The diagonal= $\sqrt{9^2 + 12^2} = 15$. E is the point of intersection between the diagonal and the fold. The fold is the perpendicular bisector of the diagonal.

Let the fold =2x. $\frac{x}{15/2} = \frac{9}{12}$: $x = \frac{45}{8}$ in.

- S06A3 The equation simplifies to |x-3|-5=3 or -|x-3|+5=3. If |x-3|=8 then x=11,-5. If |x-3|=2 then x=1,5. The sum of the roots is 12.
- S06A4 $x^2 + y^2 + 2xy (a+b)x (a+b)y + ab = 0$ simplifies to $(x+y)^2 (a+b)(x+y) + ab = 0$ We then factor (x+y-a)(x+y-b) = 0. x+y-a=0 or x+y-b=0 so x+y=a or bThere are a-1 solutions if x+y=a and b-1 solutions if x+y=b $\therefore a+b-2$ solutions.
- S06A5 $P(winning 2nd) = \frac{\binom{5}{4}\binom{49}{1}}{\binom{54}{5}} P(winning 1st) = \frac{\binom{5}{5}}{\binom{54}{5}} \therefore \frac{P(2nd)}{P(1st)} = \binom{5}{4}\binom{49}{1} = 245$
- S06A6 $P(x) = (x-3) \cdot s(x) + 25 = (x+3) \cdot t(x) + 7 = (x^2-9) \cdot q(x) + r(x)$ P(3) = 25 = r(3) and P(-3) = 7 = r(-3). Because we are dividing by a quadratic, the remainder r(x) = mx + b. $m = \frac{\Delta y}{\Delta x} = \frac{18}{6} = 3$. r(3) = 25 = 3(3) + b. b = 16r(x) = 3x + 16

SP	RING 2006	CONTEST 2	Time: 10 Minutes
Compute the smallest value of n for which a regular polygon of n sides has at least 2006 diagonals.			
			sors of n may be expressed as a^3bc ,
SPI	RING 2006	CONTEST 2	Time: 10 Minutes
A square, with side of length s, is inscribed in an equilateral triangle, with side of length t, such that two vertices of the square are on one side of the triangle. The other vertices are on the remaining two sides. The ratio $s:t$ may be written as $1:a+b\sqrt{3}$. Compute $a+b$.			
If the roots of $x^3 - ax^2 - bx - c = 0$ are a , b , and c , compute the ordered triple of numbers (a, b, c) . $(a, b, c, are all non zero)$			
SF	PRING 2006	Contest 2	Time: 10 Minutes
Let $f(x) = ax^7 + bx^5 + cx^3 + x + 4$ where a, b, and c are real numbers. If $f(11) = 17$, compute $f(-11)$.			
If $(x+y)$:	(y+z):(x+z)=	1:2:4 and $x+y+z=3$	5, compute the value of x.
S06A7	65		
S06A7 S06A8	113		
		,	
S06A8	113	,	
	Compute the diagonals. If $n = 30^4$, where a , b SPA A square, v t , such that are on the recompute a If the roots (a, b, c) . $(a$ SPA Let $f(x) = c$	diagonals. If $n = 30^4$, then the sum of the where a , b and c are prime. SPRING 2006 A square, with side of length t , such that two vertices of the are on the remaining two sides Compute $a + b$. If the roots of $x^3 - ax^2 - bx - (a, b, c)$. (a, b, c) , are all nones SPRING 2006 Let $f(x) = ax^7 + bx^5 + cx^3 + c$ compute $f(-11)$.	Compute the smallest value of n for which a regular diagonals. If $n = 30^4$, then the sum of the positive integral divis where a , b and c are prime. Compute $a + b + c$. SPRING 2006 CONTEST 2 A square, with side of length s , is inscribed in an equal t , such that two vertices of the square are on one side are on the remaining two sides. The ratio $s:t$ may be Compute $a + b$. If the roots of $x^3 - ax^2 - bx - c = 0$ are a , b , and c , considering the content of a and a are all non zero. SPRING 2006 CONTEST 2 Let $f(x) = ax^7 + bx^5 + cx^3 + x + 4$ where a , b , and c are all a and b are a .

SPRING 2006 Solutions

S06A7 The number of diagonals = the total number of ways to connect n points two at a time – the number of sides = ${}_{n}C_{2} - n$. ${}_{n}C_{2} - n \ge 2006$, $\frac{n(n-1)}{2} - n \ge 2006$ $n^{2} - 3n \ge 4012$ and $n(n-3) \ge 4012$: n = 65

S06A8 $30^4 = (2 \cdot 3 \cdot 5)^4 = 2^4 3^4 5^4$ The sum of the divisors = $(1 + 2 + 2^2 + 2^3 + 2^4)(1 + 3 + 3^2 + 3^3 + 3^4)(1 + 5 + 5^2 + 5^3 + 5^4)$ = $(31)(121)(781)=31(11)(11)(11)(71)=11^3 \cdot 31 \cdot 71 : a+b+c=11+31+71=113$

S06A9 $\frac{s}{s}$ $\frac{2s\sqrt{3}}{3}$

The top triangle is equilateral, : all the sides are s. The bottom triangles are 30-60-90 triangles

Therefore the sides are in proportion $1:\sqrt{3}:2$

$$s: t=1: \left(1+\frac{2\sqrt{3}}{3}\right): a=1, b=\frac{2}{3}. \ a+b=\frac{5}{3}$$

S06A10 The product of the roots = abc = c, therefore ab = 1. The sum of the roots = a + b + c = a, hence: b + c = 0 or b = -c. The sum of the roots taken two at a time = ab + bc + ac = -b. (1) +bc+(-1) = -b $\therefore c = -1$, b = 1 and a = 1. The answer is (1, 1, -1).

S06A11
$$f(11) = a(11)^7 + b(11)^5 + c(11)^3 + (11) + 4 = 17$$

 $f(-11) = a(-11)^7 + b(-11)^5 + c(-11)^3 + (-11) + 4 = -f(11) + 8 = -9$

S06A12 (x+y):(y+z)=1:2 (x+y):(x+z)=1:4 2x+2y=y+z 4x+4y=x+z +x = +x +y = +y 3x+2y=x+y+z=35 4x+5y=x+y+z=35Solving 3x+2y=35 and 4x+5y=35 simultaneously gives us x=15.

New York City Interscholastic Mathematics League

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE Senior A Division Contest Number 3

PART I	SPRING 2006	CONTEST 3	Time: 10 Minutes
S06A13	Compute the sum of the di	stinct prime factors of: 312 -1.	
S06A14	Each side of square MATH M, A, and H are the center externally tangent, circles, of the smallest of these circ	s of three mutually, Compute the radius	H T

PART II	SPRING 2006	CONTEST 3	TIME: 10 MINUTES
S06A15	If $\frac{\sin 1^{\circ}}{\cos 1^{\circ}} \frac{\sin 2^{\circ}}{\cos 2^{\circ}} \frac{\sin 3^{\circ}}{\cos 3^{\circ}}$	$\frac{\sin 88^{\circ}}{\cos 88^{\circ}} \frac{\sin 89^{\circ}}{\cos 89^{\circ}} = \tan k^{\circ}$, compute k .
S06A16	$\sqrt[3]{x+2} - \sqrt[3]{x-2} = 1$, com	pute x^2 .	

PART III	SPRING 2006	CONTEST 3	TIME: 10 MINUTES	
S06A17	A motorboat has a speed of 30 mph when traveling in a river with no current. The boat travels up and down a river that has a current of 10 mph. Compute the ratio of the average speed for the round trip on the river with the current to the average speed for the same trip if there were no current.			
S06A18	The medians to the legs of i If the base of the triangle is	sosceles triangle ABC in 6, compute the area of tr	ntersect to form a 60° angle as shown. riangle ABC. B A	-

ANSWERS: S06A13 100 S06A14 $2-\sqrt{2}$ S06A15 45 S06A16 5 S06A17 $\frac{8}{9}$ S06A18 27 $\sqrt{3}$

SPRING 2006 Solutions

S06A13
$$3^{12} - 1 = (3^6 - 1)(3^6 + 1) = 730 \cdot 728 = (10 \cdot 73)(4 \cdot 182) = 2 \cdot 5 \cdot 73 \cdot 2 \cdot 2 \cdot 2 \cdot 7 \cdot 13$$

The sum of the distinct prime factors of $3^{12} - 1 = 2 + 5 + 7 + 13 + 73 = 100$

S06A15
$$\sin \theta = \cos(90 - \theta) : \frac{\sin 1^{\circ} \sin 2^{\circ} \sin 3^{\circ}}{\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ}} \cdot \frac{\sin 88^{\circ} \sin 89^{\circ}}{\cos 88^{\circ} \cos 89^{\circ}} = \frac{\sin 1^{\circ} \sin 2^{\circ} \sin 2^{\circ} \sin 88^{\circ} \sin 89^{\circ}}{\sin 89^{\circ} \sin 88^{\circ} \sin 87^{\circ}} \cdot \frac{\sin 88^{\circ} \sin 89^{\circ}}{\sin 2^{\circ} \sin 1^{\circ}} = 1 : \tan k^{\circ} = 1 : k = 45$$

S06A16 Let
$$a = \sqrt[3]{x+2}$$
 and $b = \sqrt[3]{x-2}$. $a-b=1$ and $(a-b)^3 = 1 \rightarrow a^3 - b^3 - 3ab(a-b) = 1$.
From this we get $4-3ab=1 \rightarrow ab=1$. Now: $\sqrt[3]{x^2-4} = 1 \rightarrow x^2 = 5$.

- S06A17 speed time=distance $\frac{\text{speed with current}}{\text{speed without current}} = \frac{\text{time without current}}{\text{time with current}}$ Without a loss of generality, we can pick any distance for the trip. If d = 120 miles, the time without the current is 240 / 30 = 8. With the current, the speed downstream is 40, taking 3 hours to travel 120 miles. With the current, the speed upstream is 20, taking 6 hours to travel 120 miles. \therefore the answer is $\frac{8}{9}$.
- Let the area of triangle ADC = K, then the area of triangle ACE is $\frac{3}{2}K$ because the medians of a triangle divide each other in a 2:1 ratio and therefore CD:DE is 2:1. (The base EC is 3/2 times the base CD.) Area of triangle ABC is twice the area of triangle ACE = 3K. (The base AB is twice the base AE.) Triangle ADC is equilateral with side 6 so $K = \frac{s^2\sqrt{3}}{4} = 9\sqrt{3}$ and $3K = 27\sqrt{3}$.

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE Senior A Division CONTEST NUMBER 4

A DIVISI	OII CONTE	ST NUMBER 4			
SPRIN	G 2006	CONTEST 4	TIME: 10 MINUTES		
•		_			
If: 0 < A <	90° and 2 cos A	$=\sqrt{3}\cos 23^{\circ}-\sin 23^{\circ}$, co	ompute A.		
SPR	ING 2006	Contest 4	TIME: 10 MINUTES		
A box contains marbles and each marble is numbered once. One marble has the number 1, two marbles have the number 2, and so on until the last 2006 marbles are numbered 2006. One marble is drawn randomly. The probability, in simplest form, that the marble					
has an odd n	number is $\frac{p}{q}$.	Compute $p + q$.			
Let k be an odd number greater than 1. Compute the minimum number of k consecutive positive integers that have a sum of 2006.					
SPRING 2006 CONTEST 4 TIME: 10 MINUTES					
If $\log(\sec x) - \log(\cos x) = 1$ and $0 < x < \frac{\pi}{2}$, compute $\sin x$.					
Rectangle $ABCD$ has a length of 8 inches and a width of 6 inches. Triangle BCD is reflected over diagonal \overline{BD} such that C' is the image of C after the reflection. Compute AC' .					
S06A19	4+√3				
S06A20	53°				
S06A21	3010				
S06A22					
S06A23	10				
S06A24	$\frac{14}{5}$ or 2.8 o	or $2\frac{4}{5}$			
	SPRING Compute the $3+\frac{3}{4}\sqrt{3}+\frac{3}{4}$ If: $0 < A < \frac{3}{4}$ If: $0 < A < \frac{3}{4}$ A box contail, two marb 2006. One is has an odd in Let k be an opositive interesting in the SPRING	SPRING 2006 Compute the sum of the foliant $3 + \frac{3}{4}\sqrt{3} + \frac{3}{4} + \frac{3}{16}\sqrt{3} + \frac{3}{16} + \frac{3}{16}$ If: $0 < A < 90^\circ$ and $2\cos A$ SPRING 2006 A box contains marbles and 1, two marbles have the nure 2006. One marble is drawn has an odd number is $\frac{p}{q}$. Let k be an odd number greepositive integers that have a specific positive integers that have a specific positive integers that have a specific positive over diagonal $\frac{p}{BD}$. Compute $\frac{p}{AC}$. S06A19 S06A20 S06A21 S06A23 $\frac{3\sqrt{10}}{10}$	Compute the sum of the following series: $3 + \frac{3}{4}\sqrt{3} + \frac{3}{4} + \frac{3}{16}\sqrt{3} + \frac{3}{16} + \cdots$ If: $0 < A < 90^\circ$ and $2\cos A = \sqrt{3}\cos 23^\circ - \sin 23^\circ$, or $SPRING\ 2006$ Contest 4 A box contains marbles and each marble is number 1, two marbles have the number 2, and so on until the 2006. One marble is drawn randomly. The probabilities an odd number is $\frac{P}{q}$. Compute $p + q$. Let k be an odd number greater than 1. Compute the positive integers that have a sum of 2006. SPRING\ 2006 CONTEST 4 If $\log(\sec x) - \log(\cos x) = 1$ and $0 < x < \frac{\pi}{2}$, compute Rectangle $ABCD$ has a length of 8 inches and a wider reflected over diagonal \overline{BD} such that C' is the image Compute AC' . S06A19 4 + $\sqrt{3}$ S06A20 53° S06A21 3010 S06A23 $\frac{3\sqrt{10}}{10}$		

SPRING 2006 Solutions

S06A19
$$S = 3 + \frac{3}{4}\sqrt{3} + \frac{3}{4} + \frac{3}{16}\sqrt{3} + \frac{3}{16} + \cdots$$

$$S + 3\sqrt{3} = 3\sqrt{3} + 3 + \frac{3}{4}\left(\sqrt{3} + 1\right) + \frac{3}{16}\left(\sqrt{3} + 1\right) + \cdots = \frac{\left(3 + 3\sqrt{3}\right)}{1 - \frac{1}{4}} = 4\left(1 + \sqrt{3}\right) = 4 + 4\sqrt{3}$$

$$S = 4 + \sqrt{3}$$

S06A20
$$2\cos A = \sqrt{3}\cos 23^{\circ} - \sin 23^{\circ}$$

$$\cos A = \frac{\sqrt{3}}{2}\cos 23^{\circ} - \frac{1}{2}\sin 23^{\circ} = \cos 30^{\circ}\cos 23^{\circ} - \sin 30^{\circ}\sin 23^{\circ}$$

$$\cos (x+y) = \cos x\cos y - \sin x\sin y : \cos A = \cos(30^{\circ} + 23^{\circ}) \text{ and } A = 53^{\circ}$$

S06A21

$$P(odd \#) = \frac{\# \text{ of odds}}{\text{Total \# of marbles}} = \frac{1+3+5+\cdots+2005}{1+2+3+\cdots+2006} = \frac{\frac{1003(2006)}{2}}{\frac{2006(2007)}{2}} = \frac{1003}{2007} : p+q = 3010.$$

- Let the consecutive integers be a, a + 1, a + 2, ..., a + (k 1) where a is the first term and S06A22 k is the number of terms. The sum, $S = \frac{k}{2}(2a+k-1) = k\left(a + \frac{k-1}{2}\right) = 2006$. The odd factors of 2006 are 1, 17, 59, 1003 so the minimum k = 17 (a = 110).
- $\log \sec x = \log \frac{1}{\cos x} = -\log \cos x$, $-\log \cos x = 1$. $\log \cos x = \frac{-1}{2}$ S06A23 $\cos x = \frac{1}{\sqrt{10}}$ $\cos^2 x = \frac{1}{10}$ and $\sin^2 x = \frac{9}{10}$, $\sin x = \sqrt{\frac{9}{10}} = \frac{3\sqrt{10}}{10}$
- When we reflect C over line BD, S06A24 the shape ABDC' is an isosceles trapezoid. If we call E the pt of intersection of lines AD and BC', then AE = EC' = x and ED = EB = 8 - x. Solve for x, using right triangle ABE, $6^2 + x^2 = (8 - x)^2$: $x = \frac{7}{4}$

PART I	SPRING 2006	CONTEST 5	TIME: 10 MINUTES	
S06A25	Compute the numerical coefficient of $ab^2c^3d^4$ when $(a+b+c+d)^{10}$ is expanded.			
S06A26	Two swimmers, start at opposite ends of a 100-foot pool. They swim the length of the pool, back and forth, continuously for ten minutes. If one swimmer swims at a rate of 6 feet per second and the other 4 feet per second, compute the number of times they pass each other. (Assume there is no loss of time when the swimmers turn around.)			

PART II	SPRING 2006	CONTEST 5	TIME: 10 MINUTES	
S06A27	The centers of two circles are 25 in and the larger circle has a radius of tangent segment.			
S06A28	Compute the largest value of x that $(k \text{ is an integer})$ given that the root			

PART III	SPRING 2006	CONTEST 5	TIME: 10 MINUTES
S06A29	Solve for $x: x^2 - 5x + 6 + x^2 - 5x + 6 = x^2 - 5$	-3x+2 = 32	
S06A30	Given that r and s are positive	numbers for which: log	$g_4 r = \log_6 s = \log_9 \left(2r + 3s\right).$
	Compute, with no logarithms,	$\frac{s}{r}$.	

ANSWERS: S06A25 12,600 S06A26 30 S06A27 24 S06A28 9 S06A29 -2, 6 S06A30
$$\frac{3+\sqrt{17}}{2}$$

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE Senior A Division Contest Number 5 SPRING 2006 Solutions

S06A25 coefficient =
$$\binom{10}{4} \binom{6}{3} \binom{3}{2} \binom{1}{1} = \frac{10! \, 6! \, 3!}{6! \, 4! \, 3! \, 3! \, 2!} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 2} = 12,600$$

Make a graph with the horizontal axis from x = 0 to x = 100 to represent position in the pool, and with the vertical axis to represent time. The faster swimmer goes from (0, 0) to (100, 50/3) to (0, 100/3) to (100, 50), etc. The slower swimmer, whose rate is 2/3 that of the faster, goes from (100, 0) to (0, 25) to (100, 50), etc. Each oblique segment represents a lap, and the intersection of any two segments represents a moment when the swimmers pass. Continue the above diagram to 100 seconds – 6 laps for the fast swimmer and 4 for the slow one – and note 5 passings. Thus there will be 6*5=30 passings in 600 seconds.

S06A27 If we use the tangent and the radius of the bigger circle as the length and width of a rectangle, then the tangent is the other leg of a right triangle with a leg of 7 and the hypotenuse of 25. Therefore the tangent has a length of 24.

- S06A28 Let the roots = ar, a, a/r, then $ar \cdot a \cdot a/r = a^3 = 216 \therefore a = 6$. $6r + 6 + 6/r = 19 \rightarrow r + 1/r = 13/6 \rightarrow r = \frac{2}{3} \text{ or } r = \frac{3}{2}.$ Thus the roots are 4, 6, 9. The largest root is 9.
- S06A29 $|x^2 5x + 6| + |x^2 3x + 2| = 32$ $x^2 - 5x + 6 + x^2 - 3x + 2 = 32$ or $x^2 - 5x + 6 + -(x^2 - 3x + 2) = 32$ or -2x = 28 : x = -14 reject or $-(x^2 - 5x + 6) + x^2 - 3x + 2 = 32$ 2x = 36 : x = 18 reject $x = 2 \pm 4i$ reject therefore x = -2, 6.
- S06A30 Let $a = \log_4 r = \log_6 s = \log_9 (2r + 3s)$ then $r = 4^a$ $s = 6^a$ $9^a = 2r + 3s$ $9^a = 2(4^a) + 3(6^a)$ divide both sides by 4^a we get $\left(\frac{9}{4}\right)^a = 2 + 3\left(\frac{6}{4}\right)^a$ which is equivalent to $\left(\frac{3}{2}\right)^{2a} 3\left(\frac{3}{2}\right)^a 2 = 0$, $\therefore \frac{s}{r} = \left(\frac{3}{2}\right)^a = \frac{3 + \sqrt{17}}{2}$ (reject the negative answer)