JUNIOR DIVISION PART I: 10 minutes CONTEST NUMBER ONE NYCIML Contest One FALL 2007 Fall 2007 F07J1. If 365(1492x-1732)+31415=31780, compute the value of 746x-866. F07J2. Compute the number of ordered triples (x, y, z) of integers with $1 \le x \le 100$ and $1 \le y \le 100$ such that 2x + 3y = 5z. PART II: 10 minutes **NYCIML** Contest One Fall 2007 F07J3. In $\triangle ABC$, m $\angle A = 75^{\circ}$, m $\angle B = 60^{\circ}$, and AB = 12. Compute BC. F07J4. Point B is on \overline{AC} . If the coordinates of A, B, and C are (-17, 90), (x, y), and (43, 2), respectively, and AB: BC=2:3, compute the ordered pair (x, y). PART III: 10 minutes **NYCIML Contest One** Fall 2007 F07J5. Compute the number of three-digit integers that have the property that each digit except the last is less than the digit to its right. F07J6. The area of a right triangle is 20 and its perimeter is 40. Compute the length of the shorter leg. ANSWERS: F07J1. 1/2 F07J2. 2000 F07J3. $6+6\sqrt{3}$ F07J4. F07J5. (7, 54.8) 84 $21 - \sqrt{28}$ F07J6. 2 ### JUNIOR DIVISION # CONTEST NUMBER ONE SOLUTIONS **FALL 2007** **F07J1.** Let y = 746x - 866. Then 365(2y) + 31415 = 31780, so $y = \frac{1}{2}$. **F07J2.** The given equation is equivalent to 2x + 5y = 5z + 2y, that is, 2(x - y) = 5(z - y). Thus the equation has integer solutions if and only if 5 is a divisor of x - y. For each integer value of x, there are 20 values of y in the given range so that 5 is a divisor of x - y. Thus there are $100 \cdot 20 = 2000$ of the requested triples. **F07J3.** Note that $m \angle C = 45^{\circ}$. Draw altitude \overline{AH} . Then $\triangle ABH$ is $30^{\circ}-60^{\circ}-90^{\circ}$, so BH = 6 and $AH = 6\sqrt{3}$. Also, $\triangle ACH$ is $45^{\circ}-45^{\circ}-90^{\circ}$, so $CH = 6\sqrt{3}$, so $BC = 6+6\sqrt{3}$. **F07J4.** Each of the coordinates of B is the weighted average of the corresponding coordinates of A and C. Thus $x = \frac{3 \cdot (-17) + 2 \cdot 43}{5} = 7$, and $y = \frac{3 \cdot 90 + 2 \cdot 2}{5} = 54.8$. **F07J5.** These numbers must contain three different non-zero digits. Any set of three different non-zero digits can be arranged in precisely one way that fits the conditions, so there are $\binom{9}{3} = 84$ of the desired numbers. **F07.J6.** Let a and b represent the lengths of the legs, with a < b, and let c represent the length of the hypotenuse of the triangle. Then a + b + c = 40 implies that a + b = c - 40, so $(a+b)^2 = (40-c)^2$. Expand to obtain $a^2 + 2ab + b^2 = 1600 - 80c + c^2$, and then conclude that 2ab = 1600 - 80c. But $\frac{1}{2}ab = 20$, so 80 = 1600 - 80c, and so c = 19. Now a + b = 21 and ab = 40, so a and b are roots of ab = 20. Thus $$\{a,b\} = \left\{\frac{21 \pm \sqrt{281}}{2}\right\}$$, so $a = \frac{21 - \sqrt{281}}{2}$. JUNIOR DIVISION PART I: 10 minutes CONTEST NUMBER TWO NYCIML Contest Two **FALL 2007** Fall 2007 F07J7. The cost of an item is reduced by 20%. This new cost is then increased by 20% to make the final cost \$60. Compute the number of dollars in the original cost of the item. F07J8. In $\triangle ABC$, D is on \overline{BC} so that BD:DC=1:2, E is on \overline{AC} so that CE: EA = 1:2, and \overline{AD} and \overline{BE} meet at P. Compute AP: PD. PART II: 10 minutes **NYCIML Contest Two** Fall 2007 F07J9. Compute the values of m so that the following equation has two roots: $$(m-1)x^2-4x+(m+2)=0$$ F07J10. A sequence of ordered pairs is subject to the following conditions: •the first ordered pair in the sequence is (0, 0); and •the last ordered pair in the sequence is (3, 3); and •if (x, y) is an ordered pair other than the last in the sequence, the next ordered pair must be (x + 1, y), (x, y + 1), or (x + 1, y + 1). Compute the number of such sequences. PART III: 10 minutes **NYCIML Contest Two** Fall 2007 F07J11. Compute the number of perfect square divisors of 729000000. F07J12. If x + y + z = 7, xy + yz + zx = 8, and xyz = 2, compute the maximum value of x. ANSWERS: F07J7. F07J8. 62.50 F07J9. 6:1 or 6 2, -3 F07J10. 63 F07J11. 64 F07J12. $3 + \sqrt{7}$ #### JUNIOR DIVISION ### CONTEST NUMBER TWO SOLUTIONS **FALL 2007** **F07J7.** Let x be the original cost in dollars. Then $x \cdot \frac{4}{5} \cdot \frac{6}{5} = 60$, so $$x = 60 \cdot \frac{25}{24} = \frac{125}{2} = 62.50$$. **F07J8.** Use Mass Points. Assign a mass of 2 to C. Then the masses at A and B are 1 and 4, respectively. Hence the masses at D and E are 6 and 3, respectively, and so AP: PD = 6. For more information google mass point geometry. OR The wording of the problem implies that the requested ratio is the same for any triangle. Assume $\angle C$ is a right angle, and place a coordinate system so that A (0, 3) and B (3, 0). Then E (0, 1) and D (2, 0). Equations of lines BE and AD are y = -(1/3)x + 1 and y = -(3/2)x + 3, respectively. Solve to obtain x = 12/7. Then AP/PD equals the ratio of the horizontal changes from A to P and P to D, namely, $\frac{12/7}{2-12/7} = 6$. (Note that we could have used a parallelogram instead of a square coordinate system, and the reasoning would still be valid, so the result is true for all triangles.) **F07J9.** The discriminant is 0 when $$16-4(m-1)(m+2)=0$$; $m^2+m-6=0$, $m=2,-3$ **F07J10.** Each ordered pair in the sequence corresponds to a point in the coordinate plane. Thus each sequence corresponds to a path along lattice points from (0, 0) to (3, 3), where each point can be reached only from a point directly to its left, directly below it, or diagonally from the left and below. The number of paths that can reach any point is therefore the sum of the number of paths that can be reached from the three points described above. Use this idea to label each point in the square lattice from (0,0) to (3,3) with the number of paths that reach the point to find that there are 63 such paths. **F07J11.** Factor to obtain $729000000 = 2^6 \cdot 3^6 \cdot 5^6$. Every divisor of 729000000 must be of the form $2^a \cdot 3^b \cdot 5^c$, where a, b, and c are nonnegative integers. For the divisor to be a perfect square, a, b, and c must be even. Thus there are 4 choices for each of a, b, and c, and so there are $4 \cdot 4 \cdot 4 = 64$ perfect square divisors. **F07J12.** Notice that x, y, and z are roots of $w^3 - 7w^2 + 8w - 2 = 0$. Factor to obtain $(w-1)(w^2 - 6w + 2) = 0$. Thus $\{x, y, z\} = \{1, 3 \pm \sqrt{7}\}$, and the solutions of the given system are the 6 permutations of $(1, 3 - \sqrt{7}, 3 + \sqrt{7})$. The maximum value of x is therefore $3 + \sqrt{7}$. JUNIOR DIVISION PART I: 10 minutes # CONTEST NUMBER THREE NYCIML Contest Three FALL 2007 Fall 2007 F07J13. Compute $\sqrt{12345^2 + 2\cdot 12345\cdot 67890 + 67890^2}$. F07J14. In $\triangle ABC$, \overline{AT} is an angle-bisector. The circle with \overline{AT} as diameter intersects \overline{AB} at P and \overline{AC} at Q, where $Q \neq A$ and $P \neq A$, AP = 15, PB = 7, and CQ = 17. Compute AQ. PART II: 10 minutes #### **NYCIML** Contest Three Fall 2007 F07J15. The cost of an item is decreased by n%, then this new cost is increased by n% to make a final cost of f dollars. If the original cost of the item had been reduced by 5.29%, the final cost would also have been f dollars. Compute n. F07J16. If the coordinates of A, B, and C are (-14, 1), (-1, 9), and (6, -1), respectively, compute the coordinates of the centroid of triangle ABC. [The *centroid* of a triangle is the point of intersection of its medians.] PART III: 10 minutes #### **NYCIML Contest Three** Fall 2007 F07J17. A train 100 meters long travels at a speed of 40 kilometers per hour. The train passes through a tunnel. The end of the train emerges from the tunnel exactly 12 minutes after the front of the train has entered it. Compute, in kilometers, the length of the tunnel? F07J18. In $\triangle ABC$, AB = 7, BC = 8, CA = 9, \overline{AD} is an angle-bisector, P is the midpoint of \overline{AD} , and \overline{BP} intersects \overline{AC} at E. Compute AE. ### ANSWERS: F07J13. 80235 F07J14. 15 F07J15. 23 F07J16. (-3, 3) F07J17. 7.9 F07J18. 63/23 ### JUNIOR DIVISION # CONTEST NUMBER THREE SOLUTIONS **FALL 2007** **F07J13.** Let x = 12345 and y = 67890. Then the given expression equals $\sqrt{x^2 + 2xy + y^2} = \sqrt{(x+y)^2} = |x+y| = x + y = 80235$. **F07J14.** Because angles PAT and QAT are congruent inscribed angles, $\widehat{PT} \cong \widehat{TQ}$, and because \overline{AT} is a diameter, \widehat{APT} and \widehat{AQT} are semicircles. Thus $\widehat{AP} \cong \widehat{AQ}$, so 15 = AP = AQ. **F07J15.** Let x be the original cost in dollars. Then $x \left(1 - \frac{n}{100}\right) \left(1 + \frac{n}{100}\right) = (1 - .0529)x$, so $1 - \frac{n^2}{10000} = 1 - .0529$. Then $\frac{n^2}{10000} = .0529$, so $n^2 = 529$, and n = 23. **F07J16.** Let M be the midpoint of \overline{AB} . Then each coordinate of M is the average of the corresponding coordinates of A and B. Use the notation $M = \frac{A+B}{2}$ to express this. Let G be the centroid. Because the medians of a triangle are concurrent at a point 2/3 of the way along each median, from the vertex to the opposite side, $G = \frac{2M+C}{3} = \frac{A+B+C}{3}$. Thus each coordinate of G is the average of the corresponding coordinates of A, B, and C, and so the coordinates of G are (-3, 3). **F07J17.** If the tunnel is x meters long, the train has taken 12 minutes to travel x + 100 meters. Since 40 kilometers per hour is 2000/3 meters per minute, we have (12)(2000/3) = x + 100, and x = 7900 meters, or 7.9 kilometers. **F07J18.** Use the Angle-Bisector Theorem to conclude that BD:DC=7:9. Assign masses to B and C of 9 and 7, respectively. Then the mass at D is 16, so the mass at A is 16, and then the mass at E is 23. Thus AE:EC=7:16, and so AE=(7/23)AC=63/23.