New York City Interscholastic Math League Junior Division Contest number 1

Part I
S12J1

S12J2
Spring 2012
Compute the smallest positive integer q such that there exists a positive integer p satisfying $\frac{1}{5}<\frac{p}{q}<\frac{1}{4}$.

Compute the minimum value of n such that a regular polygon with n sides has 100° rotational symmetry.

Contest 1

Time: 10 Minutes

S12J3

S12J4

Compute the number of sets $\{a, b, c\}$ of primes which satisfy $a>b>c$ and $a+b+c=60$.

Line l has equation $3 x+4 y=12$. Line m is one unit from line l and closer to the origin. An equation of line m can be written in the form $a x+b y=c$, where a, b, and c are positive integers whose greatest common divisor is 1 . Compute the ordered triple (a, b, c).

Spring 2012
In triangle $A B C$, the measures of angles A and B are 58° and 68° respectively, and O is the circumcenter (center of the circumscribed circle). Find the measure of angle $O B C$ in degrees.

S12J6 Three couples are sitting in a row. Compute the number of arrangements in which no person is sitting next to his or her partner.

New York City Interscholastic Math League Junior Division
 Contest Number 2

Part I
Spring 2012
Contest 2
Time: 10 Minutes
S12J7
Find the maximum integer n that is less than 2012 for which the sum $1+2+3+\cdots+n$ is odd.

S12J8
Find the positive integer n for which $\frac{1}{n+1}<\sqrt{960}-\sqrt{959}<\frac{1}{n}$.
Part II Spring 2012 Contest $2 \quad$ Time: 10 Minutes

S12J9 Points A, B, C, and D are collinear with $A B=5, B C=8$, and $C D=$ 14. Compute all possible values of $A D$.

S12J10
If $4 x+5 y=20$, find the minimum value of $\sqrt{x^{2}+y^{2}}$.

Part III Spring 2012 Contest 2 Time: 10 Minutes
S12J11 Compute the least positive integer n such that $10!\cdot n=m^{3}$ for some positive integer m.

S12J12
Compute the coefficient of x^{9} in the expansion of $\left(x^{3}+x^{2}+1\right)^{8}$.

New York City Interscholastic Math League Junior Division
 Contest Number 3

Part I
S12J13

S12J14
Spring 2012
A certain linear translation maps point $A(-1,3)$ to point $A^{\prime}(2,6)$ and maps point $B(-2,4)$ to point $B^{\prime}(p, q)$. Compute the ordered pair (p, q).

Find the real value of x that satisfies $\log _{10}((x+100)-x)=\frac{x+100}{x}$.

Part II Spring 2012 Contest $3 \quad$ Time: 10 Minutes
S12J15 Compute $\frac{15 \cdot 15!+15!}{13 \cdot 13!+13!}$.
S12J16 In triangle $A B C$, the measures of angles A and B are 58° and 68° respectively, I is the incenter, and $\overleftrightarrow{A I}$ intersects the circumcircle at D, $D \neq A$. Find the measure of angle $B I D$ in degrees.

Part III Spring 2012 Contest $3 \quad$ Time: 10 Minutes
S12J17 Compute the number of square numbers between 1000 and 9999, for which the hundreds digit equals the units digit and the thousands digit equals the tens digit.

S12J18 In square $A B C D, A B=5$. Point P is not in the plane of the square, $P A=\sqrt{39}, P B=8$, and $P C=7$. Compute $P D^{2}$.

New York City Interscholastic Math League Junior Division
 Contest Number 1 Solutions

S12J1. Answer : 9

Solution. The inequality cannot be satisfied if $p=1$, and if $p>1$ we have that $\frac{p}{q} \geq \frac{1}{4}$ for $q \leq 8$. Thus the smallest possible value for q is 9 , and indeed $\frac{2}{9}$ satisfies the inequality.

S12J2. Answer : 18

Solution. The polygon has 100° rotational symmetry if and only if each vertex "lands" on another vertex after a 100° rotation. The degree measure of each arc intercepted by a side of the polygon is $360 / n$, so for a vertex to land on another vertex, it must be rotated ($360 / n$) m° for some integer m. Thus $360 m / n=100$. Hence $18 m=5 n$, and so the minimum value of n is 18 .

S12J3. Answer : 3

Solution. Because $a+b+c$ is even, at least one of them must be even. Therefore one of the primes is 2 and the sum of the other two is 58 . Check the primes to find that the only three such sets are $\{2,5,53\}$, $\{2,11,47\}$, and $\{2,17,41\}$.

S12J4. Answer : $(\mathbf{3}, \mathbf{4}, \mathbf{7})$

Solution. Line l, the x-axis, and the y-axis determine a right triangle whose legs have lengths 3 and 4. The distance from line l to the origin is the length h of the altitude to the hypotenuse of that right triangle. The area of the right triangle is $\frac{1}{2}(3 \cdot 4)$, and because the hypotenuse is 5 , it is also $\frac{1}{2}(5 h)$. Thus $h=12 / 5$, and so the distance from line m to the origin is $(12 / 5)-1=7 / 5$. Line m also forms a right triangle with the x - and y-axes. This right triangle is similar to the one formed by line l, and their similarity ratio is $(7 / 5):(12 / 5)=$ $7: 12$. Thus the intercepts of line m are $(0,21 / 12)$ and $(28 / 12,0)$. Because line m is parallel to line l, it has equation $3 x+4 y=k$ for some real number k. Substitute the coordinates of either intercept to find that $k=7$. Thus $(a, b, c)=(3,4,7)$.

S12J5. Answer : 32
Solution. Angle A is an inscribed angle so $m \angle B O C=2(58)=116$. Because $O B$ and $O C$ are radii of the circumcircle, triangle $C O B$ is isosceles, and $m \angle O B C=\frac{1}{2}(180-116)=32$.

S12J6. Answer : 240
Solution. Let A denote both the person in the first seat and his or her partner, let B denote both the person in the second seat and his or her partner, and let C denote both of the remaining people. Each permissible seating arrangement corresponds to a six-letter string consisting of two $A \mathrm{~s}, B \mathrm{~s}$, and $C \mathrm{~s}$ with no two $A \mathrm{~s}, B \mathrm{~s}$, or $C \mathrm{~s}$ adjacent. The first three letters in a permissible string must be $A B A$ or $A B C$. In the former case, the last three letters must be $C B C$, while in the latter case, the last three letters may be any arrangement of $A B C$ that does not begin with C, of which there are four: $A B C, A C B, B A C$, and $B C A$. Notice that there are 3! possible assignments of the three couples to the letters A, B, and C; and there
are 2 possible arrangements for the members of each couple. Thus each of the 5 permissible strings corresponds to $3!\cdot 2^{3}=48$ seating arrangements, so there are $5 \cdot 48=240$ permissible seating arrangements.

New York City Interscholastic Math League Junior Division

S12J7. Answer : 2010

Solution. Recall that $1+2+3+\cdots+n=\frac{1}{2} n(n+1)$. For $n=2011$, this gives $\frac{1}{2} n(n+1)=$ $2011 \cdot 1006$, which is even. For $n=2010$, this gives $\frac{1}{2} n(n+1)=1005 \cdot 2011$, which is odd. Thus the maximum n is 2010 .

S12J8. Answer : 61
Solution. The given condition is equivalent to $n+1>(\sqrt{960}-\sqrt{959})^{-1}>n$, that is, $n+1>\sqrt{960}+\sqrt{959}>n$. Because $31^{2}=961$, the sum $\sqrt{960}+\sqrt{959}$ is slightly less than 62 . Thus the requested value of n is 61 .

S12J9. Answer : 1, 11, 17, 27
Solution. Because $A B=5$ and $B C=8$, conclude that $A C=8-5=3$ or $A C=8+5=13$. Then $A D=14-3,14+3,14-13$, or $14+13$, that is, $A D=11,17,1$, or 27 .

S12J10. Answer : 20 $\sqrt{\mathbf{4 1} / 41}$
Solution. The expression $\sqrt{x^{2}+y^{2}}$ represents the distance from a point (x, y) to the origin. Therefore, the requested minimum value is the distance from the point on the line with equation $4 x+5 y=20$ that is closest to the origin. That line, the x-axis, and the y-axis determine a right triangle whose legs have lengths 4 and 5 and whose hypotenuse has length $\sqrt{41}$. The desired distance h is the altitude to the hypotenuse. Because the area of the triangle is equal to both $\frac{1}{2} \cdot 4 \cdot 5$ and $\frac{1}{2} \cdot \sqrt{41} \cdot h$, conclude that $h=20 \sqrt{41} / 41$.

S12J11. Answer : 4410

Solution. The prime factorization of 10 ! is $2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7$. Then $2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot n=m^{3}$. Because a number is a cube exactly when all of the exponents in its prime factorization are divisible by 3 , the requested value of n is $2 \cdot 3^{2} \cdot 5 \cdot 7^{2}=4410$.

S12J12. Answer : 336

Solution. Each term in the expanded product before simplifying is obtained by selecting either an x^{3}, an x^{2} or a 1 from each of the eight factors. Denote by a, b, and c the number of factors of x^{3}, x^{2}, and 1 respectively that are selected. The resulting product is $\left(x^{3}\right)^{a}\left(x^{2}\right)^{b}(1)^{c}=x^{3 a+2 b}$. The coefficient of x^{9} in the simplified expansion must equal the number of selections for which $3 a+2 b=9$ and $a+b+c=8$. Thus $(a, b, c)=(3,0,5)$ or $(1,3,4)$. The number of selections consisting of 3 factors of x^{3} and 0 factors of x^{2} is $\binom{8}{3}=56$, and the number of selections consisting of 1 factor of x^{3} and 3 factors of x^{2} is $\binom{8}{1}\binom{7}{3}=280$. Thus the desired coefficient is $56+280=336$.

New York City Interscholastic Math League Junior Division
 Contest Number 3 Solutions

S12J13. Answer : (1, 7)

Solution. The translation moves point A to point $A^{\prime}, 3$ units to the right and 3 units up. Thus it must do the same to B, so $B^{\prime}(1,7)$.

S12J14. Answer : 100
Solution. Notice that $\log _{10}((x+100)-x)=\log _{10} 100=2$, and that $(x+100) / x=1+100 / x$. Thus the given equation is equivalent to $2=1+100 / x$. Then $100 / x=1$ and so $x=100$.

S12J15. Answer : 240
Solution. Factor to obtain

$$
\frac{15 \cdot 15!+15!}{13 \cdot 13!+13!}=\frac{15!(15+1)}{13!(13+1)}=\frac{16!}{14!}=16 \cdot 15=240
$$

S12J16. Answer : 63
Solution. The incenter of a triangle is the intersection of the angle bisectors, so $m \angle I B C=$ 34° and $m \angle C A D=29^{\circ}$. Since angle $B I D$ is the external angle of triangle $A I B, \angle B I D=$ $\angle A B I+\angle B A I=34^{\circ}+29^{\circ}=63^{\circ}$.

S12J17. Answer : 0
Solution. Let n^{2} be a number satisfying the given conditions. Denote its 1000 s and 10 s digits by a and its 100 s and 1 s digits by b. Then $n^{2}=1000 a+100 b+10 a+b=101(10 a+b)$. Because 101 is a prime, 101 must be a divisor of n, but $1000 \leq n^{2} \leq 9999$ so $n<100$, and there are no numbers that satisfy the given conditions.

S12J18. Answer : 24
Solution. Let P^{\prime} be the point in the plane of the square such that $P P^{\prime}$ is perpendicular to the plane of the square. Let $h=P P^{\prime}$, and denote $P^{\prime} A, P^{\prime} B, P^{\prime} C$, and $P^{\prime} D$ by a, b, c, and d, respectively. Then $P A^{2}=h^{2}+a^{2}, P B^{2}=h^{2}+b^{2}, P C^{2}=h^{2}+c^{2}$, and $P D^{2}=h^{2}+d^{2}$. Now let p, q, r, and s denote the distances from P^{\prime} to $\overline{A D}, \overline{B C}, \overline{A B}$, and $\overline{C D}$ respectively. Then $p^{2}+r^{2}=a^{2}, r^{2}+q^{2}=b^{2}, q^{2}+s^{2}=c^{2}$, and $s^{2}+p^{2}=d^{2}$. Thus $a^{2}+c^{2}=p^{2}+q^{2}+r^{2}+s^{2}=b^{2}+d^{2}$. Hence $a^{2}+h^{2}+c^{2}+h^{2}=b^{2}+h^{2}+d^{2}+h^{2}$. Therefore $P A^{2}+P C^{2}=P B^{2}+P D^{2}$. This result is known as the British-Flag Theorem, which greatly simplifies this problem. Substitute to find that $P D^{2}=24$.

