
New York City Interscholastic Math League

Senior Division A Contest Number 1

Part I Spring 2010 Contest 1 Time: 10 Minutes

S10A1 An arithmetic sequence with twelve terms has third term equal to 6
and seventh term equal to 16. Compute the sum of all twelve terms of
this sequence.

S10A2 There are three quadrilaterals whose vertices are (−2, 6), (−2,−2),
(1,−2) and (−1, 0), and they have three different areas. Compute the
largest of these three areas.

Part II Spring 2010 Contest 1 Time: 10 Minutes

S10A3 Compute the number of ways in which one can mark three 1×1 squares
in a 3×3 square grid so that no two of the marked squares share either
an edge or a vertex.

S10A4 In 4ABC, AB = BC = 2 and AC = 1. Median AM and angle
bisector CT intersect at point P . Compute the length BP .

Part III Spring 2010 Contest 1 Time: 10 Minutes

S10A5 Compute the smallest positive integer n such that 2n − 1 is divisible by
257.

S10A6 Tanya and Oleg play the following game: from a pile of twelve identical
stones, Tanya removes and discards either one, two or three stones.
Then Oleg removes either one, two or three of the remaining stones,
and then Tanya removes either one, two or three stones, and so on.
The game ends when the last stone has been removed. Compute the
number of possible games that Tanya and Oleg can play.



New York City Interscholastic Math League

Senior Division A Contest Number 2

Part I Spring 2010 Contest 2 Time: 10 Minutes

S10A7

An ant walks one meter at a speed of 15 inches per minute, one meter
at a speed of 20 inches per minute and one meter at a speed of 25 inches
per minute. Compute (in inches per minute) the average speed of the
ant over its entire walk.

S10A8
Compute the number of ordered triples (x, y, z) of positive integers such
that x + y + z ≤ 6.

Part II Spring 2010 Contest 2 Time: 10 Minutes

S10A9
Compute 20116−6 ·20115 ·2009+15 ·20114 ·20092−20 ·20113 ·20093 +
15 · 20112 · 20094 − 6 · 2011 · 20095 + 20096.

S10A10
A sequence a0, a1, a2, . . . is defined by a0 = 0, an = an−1 +2 if n is odd,
and an = 3an−1 if n is even. Compute a0 + a1 + a2 + . . . + a15.

Part III Spring 2010 Contest 2 Time: 10 Minutes

S10A11

Rectangles ABCD and A′BC ′D share diagonal
BD, as shown. If AB = A′B = 1, BC = BC ′ = 3,
compute the area of overlap of the two rectangles.

A

B

C

D

A’

C’

S10A12

Ann randomly selects two unit squares in a 6×6 square grid and marks
them. Then, she marks the smallest possible number of additional
unit squares so that the result is symmetric under all rotations and
reflections of the large grid. Compute the expected number of unit
squares that Ann will have marked at the end of this process.
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Senior Division A Contest Number 3

Part I Spring 2010 Contest 3 Time: 10 Minutes

S10A13 Real numbers x and y are both bigger than 1, and log
x
y +log

y
x =

29

10
.

Compute | log
x
y − log

y
x|.

S10A14 In 4ABC, we have AB = 15, BC = 9 and CA = 12. Let G be the
centroid of 4ABC. Let line ` be the line parallel to BC that passes
through the midpoint of AG. Let B ′ be the intersection of ` with AB

and let C ′ be the intersection of ` with AC. Compute the area of
quadrilateral BB′C ′C.

Part II Spring 2010 Contest 3 Time: 10 Minutes

S10A15 Compute the number of positive divisors of 75600 = 24 · 33 · 52 · 7 that
are not divisors of 25725 = 3 · 52 · 73.

S10A16 There is exactly one integer q such that 0 ≤ q ≤ 100 with the property

that the polynomial
5n4

12
− 7n3

3
+

qn2

96
+

n

3
− 3 takes an integer value

whenever n is an integer. Compute q.

Part III Spring 2010 Contest 3 Time: 10 Minutes

S10A17 Compute the volume of the regular octahedron whose vertices are
(10, 0, 0), (0, 10, 0), (0, 0, 10), (−10, 0, 0), (0,−10, 0), and (0, 0,−10).

S10A18 Compute the number of 4-tuples (a, b, c, d) of integers such that a, b, c

and d lie between 0 and 10, inclusive, and ad− bc is not divisible by 11.
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Senior Division A Contest Number 4

Part I Spring 2010 Contest 4 Time: 10 Minutes

S10A19 Compute the ordered pair (a, b) of real numbers such that we have

(a + bi)(−1 + 2i) =
1 + 3i

2 − 5i
, where i =

√
−1.

S10A20 Compute the maximum value of the function cos
(

x + π

6

)

− cos
(

x − π

3

)

as x varies over the real numbers.

Part II Spring 2010 Contest 4 Time: 10 Minutes

S10A21 Compute the number of paths that begin at (0, 0), end at (2, 2), and
consist of six steps such that each step is of unit length and parallel
to one of the coordinate axes. (Thus, for example, the first step of the
path must be from (0, 0) to one of (1, 0), (0, 1), (−1, 0) or (0,−1).)

S10A22 Compute the number of integers x such that 1 ≤ x ≤ 105, x2 − 1 is
divisible by 3, x2 is divisible by 7 and x2 + 1 is divisible by 5.

Part III Spring 2010 Contest 4 Time: 10 Minutes

S10A23 Compute the number of real roots of the equation (x−2)2(6−x)2 = 25.

S10A24 Tanya and Oleg play the following game (called “two-pile Nim”): from
two (distinguishable) piles of four indistinguishable stones, the players
take turns choosing a pile and removing at least one and at most three
stones from that pile. The game ends when the last stone has been
removed. Compute the number of possible games in which Tanya moves
first.



New York City Interscholastic Math League

Senior Division A Contest Number 5

Part I Spring 2010 Contest 5 Time: 10 Minutes

S10A25

Alejandro rolls a fair six-sided die numbered from 1 to 6. Martina
rolls a fair ten-sided die with one side numbered 1, two sides numbered
2, three sides numbered 3 and four sides numbered 4. Compute the
probability that Alejandro’s roll is larger than Martina’s roll.

S10A26

Circle O1 has radius 3 and circle O2 has radius 1. If
the length of the common external tangent of cir-
cles O1 and O2 is twice the length of their common
internal tangent, compute the distance O1O2.

2d

O1O2
d

Part II Spring 2010 Contest 5 Time: 10 Minutes

S10A27
Compute the number of ways to write 45 as a sum of two or more
consecutive positive integers.

S10A28
Compute the largest real number d such that every value of x that
satisfies |x + 2| ≤ d also satisfies |x2 − 4| ≤ 1

3
.

Part III Spring 2010 Contest 5 Time: 10 Minutes

S10A29

Compute all ordered pairs (a, b) real numbers such that

a2 + 2ab = 4 = 4ab − b2.

S10A30

A regular octahedron has vertices at (10, 0, 0), (0, 10, 0), (0, 0, 10),
(−10, 0, 0), (0,−10, 0), and (0, 0,−10). Compute the number of points
(x, y, z) with integer coordinates that are either interior or boundary
points of this octahedron. (This includes vertices, points on the edges,
points on the faces, and points in the interior of the octahedron.)



New York City Interscholastic Math League

Senior A Division Contest Number 1 Solutions

S10A1. 177. Let the first term be a and the common difference be d. Then a + 2d = 6
and a + 6d = 16. Subtracting one equation from the other yields d = 5

2
and so a = 1. Thus

the sum of the twelve terms of the sequence is 12 · 2a+11d

2
= 177.

S10A2. 9. For a polygon R, let [R] denote its area. Label the points A = (−2, 6),
B = (−2,−2), C = (1,−2) and D = (−1, 0). Then 4ABC is a right triangle with D

in its interior, and the three quadrilaterals are ABCD, ABDC and ADBC. We have
[ABCD] = [ABC] − [CDA], [ABDC] = [ABC] − [BDC] and [ADBC] = [ABC] − [ADB].
We can use the triangle area formula to compute [ABC] = 1

2
·8 ·3 = 12, [BDC] = 1

2
·2 ·3 = 3,

[ADB] = 1

2
· 8 · 1 = 4 and so [CDA] = [ABC] − [ADB] − [BDC] = 5. It follows that

[ABCD] = 7, [ABDC] = 9 and [ADBC] = 8, so the answer is 9.
S10A3. 8. There are many ways of demonstrating that

the only possible arrangements are the two shown at right
and their rotations.

S10A4.

√
34

4
. Since M is the midpoint of BC we have

CM = 1 and thus 4AMC is isosceles. It follows that the angle bisector ~CT is also a median
of 4AMC, so P is the midpoint of AM . By Stewart’s theorem, we have that the length m

of the median to the side of length c of a triangle with sides of length a, b and c is given by

m = 1

2

√
2a2 + 2b2 − c2. Thus, AM = 1

2

√
8 + 2 − 4 =

√

6

2
and so BP = 1

2

√

8 + 2 − 3

2
=

√

34

4
.

S10A5. 16. We have 257 = 256+1 = 28 +1. Thus, 257 divides 216 −1 = (28−1)(28 +1).
There are several different ways to see that 257 does not divide 2n − 1 for any n ≤ 15:
for example, if 257 divides 2n − 1 then it also divides 2n−8(257) − (2n − 1) = 2n−8 + 1, and
2n−8+1 < 257 if n < 16. Alternatively, one could design an argument around the observation
that 28 ≡ −1 (mod 257).

S10A6. 927. Let an be the number of games that can be played if we begin with n

stones. Thus, for example, a1 = 1, a2 = 2 and a3 = 4. For n ≥ 4, the first player may leave
n − 1, n − 2 or n − 3 stones. It follows immediately that an = an−1 + an−2 + an−3, and so
we may recursively compute that a4 = 4 + 2 + 1 = 7, a5 = 7 + 4 + 2 = 13, etc., leading
to a12 = 927. (The numbers in this sequence are sometimes referred to as the “tribonacci
numbers.”) Follow-up question: if the goal is to take the last stone, which player has a
winning strategy in this game?
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Senior A Division Contest Number 2 Solutions

S10A7.
900

47
. Suppose that 1 meter is equal to d inches. Then the total time required by

the ant is d

15
+ d

20
+ d

25
minutes, and in this time it travels 3d inches. Thus, its average speed

is
3

1

15
+ 1

20
+ 1

25

=
900

47

inches per minute.
S10A8. 20. One possible approach is to note that if (x, y, z) is a positive-integer solution

of the given inequality and w = 7−x−y−z then w is a positive integer and w+x+y+z = 7.
This is a one-to-one correspondance between triples satisfying the given inequality and four-
tuples satisfying this new equation. Now we may use the method of “stars and bars” to see
that there are

(

6

3

)

=
6 · 5 · 4

3!
= 20

solutions.
One of several alternative approaches is to solve separately the equations x + y + z = 3,

x + y + z = 4, etc., and add up the number of solutions in each case. Challenge: can you
see how to use this idea to provide a general proof of the “hockey-stick identity” by showing
that the two sides are different ways of counting the same thing?

S10A9. 64. The given expression is the binomial theorem expansion of (2011− 2009)6 =
26 = 64.

S10A10. 19648. We can compute that a1 = 2, a2 = 6, a3 = 8, a4 = 24 and a5 = 26.
These values lead to the guess a2n−1 = 3n − 1 and a2n = 3n+1 − 3, which we can prove by
induction. Then we have that

(a0 + a2 + . . . + a14) + (a1 + a3 + . . . + a15) = (31 + . . . + 38 − 8 · 3) + (31 + . . . + 38 − 8 · 1)

= 2 · 39 − 3

2
− 32

= 39 − 35

= 19648.

Alternatively, rather than cleverly guessing the formula, we can examine the base-3 rep-
resentations of the numbers an: we have a0 = 0, we get a2n from a2n−1 by adding a 0 at the
end of the base-3 expansion, and we get a2n+1 from a2n by chaning the final 0 in the base-3
expansion to a 2, so a2n = 22 · · ·203 and a2n+1 = 22 · · ·223, giving us the expressions above.

S10A11.
5

3
. Let P be the intersection of AD and BC ′ and let AP = x. By symmetry,

C ′P = x and so BP = 3 − x. Then by the Pythagorean Theorem in 4ABP we have that
x2 + 1 = (3 − x)2 and so x = 4

3
. Thus the area of 4ABP is 1

2
· 4

3
· 1 = 2

3
, and so the area of

the region in question is 3 − 2 · 2

3
= 5

3
.



S10A12.
1276

105
. Consider the diagram below. For any i ∈ {1, . . . , 6}, if Ann marks a

square labelled i then she must mark all other squares labelled i as well. Thus, we have five
cases:

1 1

11

2

2 2

2
3 3
3 3

4
4

4
4 4

4

4
45 5

5
5

5 5

5
5

6 6
6
6

6 6
6
6

• Ann marks two cells with label 1 (or equivalently with label
2, or 3). The probability that this happens is 4

36
· 3

35
and it

results in 4 marked squares. Thus, the total contribution in
this case is 3·4·4·3

36·35
.

• Ann marks two cells with label 4 (or equivalently with label
5, or 6). The probability that this happens is 8

36
· 7

35
and it

results in 8 marked squares. Thus, the total contribution in
this case is 3·8·8·7

36·35
.

• Ann marks one cell with label 1 and one cell with label 2 (or equivalently 1 and 3, or 2
and 3). The probability that this happens is 8

36
· 4

35
and it results in 8 marked squares.

Thus, the total contribution in this case is 3·8·8·4

36·35
.

• Ann marks one cell with label 4 and one cell with label 5 (or equivalently 4 and 6, or 5
and 6). The probability that this happens is 16

36
· 8

35
and it results in 16 marked squares.

Thus, the total contribution in this case is 3·16·16·8

36·35
.

• Ann marks one cell with label 1 and one cell with label 4 (or equivalently 1 and 5, 1
and 6, 2 and 4, 2 and 5, 2 and 6, 3 and 4, 3 and 5, or 3 and 6). The probability that
this happens is 8

36
· 4

35
+ 4

36
· 8

35
and it results in 12 marked squares. Thus, the total

contribution in this case is 9·12·(8·4+4·8)

36·35
.

Finally, we sum up these individual contributions to get the answer 1276

105
.
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S10A13.
21

10
. Let ` = log

x
y. By logarithm rules, 1

`
= log

y
x. Thus `+ 1

`
= 29

10
, and we can

solve this to find that ` = 5

2
or 2

5
. In either case, we have | log

x
y − log

y
x| =

∣

∣

5

2
− 2

5

∣

∣ = 21

10
.

S10A14. 48. By the choice of ` and the points B ′, C ′, we have that 4ABC ∼ 4AB ′C ′.
Let M and M ′ be the midpoints of BC and B ′C ′, respectively. Since the centroid of a
triangle trisects its medians we have AG = 2AM

3
, while by the definition of midpoint we have

AM ′ = AG

2
= AM

3
. This implies immediately that the ratio of similarity between 4ABC and

4AB′C ′ is 1

3
, and so the smaller triangle has area exactly

(

1

3

)2

[4ABC] = 1

9
· 54 = 6. The

area of BB′C ′C is simply the difference between the areas of the two triangles, or 54−6 = 48.
Observe that we didn’t use the fact that 4ABC at all (and in fact our argument works

for any triangle). Because the triangle is nice, we could also solve this problem using a
coordinate-based approach (or possibly several other methods).

S10A15. 108. Since 75600 = 24 · 33 · 52 · 7, there are (4 + 1)(3 + 1)(2 + 1)(1 + 1) = 120
divisors of 75600. A number divides 75600 and 25725 if and only if it divides their GCD,
3 · 52 · 7. The number of such numbers is (1 + 1)(2 + 1)(1 + 1) = 12. Thus the answer is
120 − 12 = 108.

S10A16. 56. Let P (n) = 5n
4

12
− 7n

3

3
+ qn

2

96
+ n

3
− 3. We know that

(

n

4

)

= n(n−1)(n−2)(n−3)

4!
=

n
4
−6n

3+11n
2
−6n

24
is an integer for every integer n. Thus, Q(n) = P (n)−10

(

n

4

)

= n
3

6
+ (q−440)n

2

96
+

17n

6
− 3 is an integer for every integer n. Similarly, (n+1)n(n−1)

6
= n

3
−n

6
is an integer for every

integer n, so Q(n)− n
3
−n

6
= (q−440)n

2

96
+ 3n− 3 is an integer for every integer n, and thus also

(q−440)n
2

96
must be an integer for every integer n. But then q−440

96
must be an integer. The

only integer in the range
[

−440

96
, −340

96

]

is −4, which means q − 440 = −4 · 96 and so q = 56.

Alternatively, one can plug in n = 1 to see that we must have that 5

12
− 7

3
+ q

96
+ 1

3
−3 = q−440

96

is an integer, and conclude in the same way. (Note that this second solution shows that q = 56
is the only possible value, but doesn’t prove that when q = 56 we have that the value of the
polynomial is an integer whenever n is an integer.)

S10A17. 4000

3
. The octahedron consists of two square pyramids glued together along their

base. Each of the two square pyramids has volume 1

3
·10 ·(10

√
2)2 = 2000

3
, so the total volume

is 4000

3
.

S10A18. 13200. First choose a and b arbitrarily so that we do not have a = b = 0. There
are 112 − 1 = 120 ways to make this choice. Now, consider the possibilities for choosing c

and d. If a 6= 0 then there is some integer x such that ax ≡ c (mod 11). Then as long as
d 6≡ bx (mod 11), we will have ad − bc 6≡ 0 (mod 11). This means that for every one of the
11 choices for c, there are exactly 10 good choices for d, so 110 choices for the pair (c, d). If
instead a = 0 then b 6= 0 and so we may repeat the same argument with the roles of c and
d switched, so there are 110 choices for (c, d) in this case, as well. Thus in total we have
120 · 110 = 13200 choices of (a, b, c, d).

Challenge: what is the answer if we replace “11” with an arbitrary prime p? What step
goes wrong if we use a non-prime?
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S10A19.
(

7

29
, 3

29

)

. We have 1 + 3i = (a + bi)(−1 + 2i)(2 − 5i) = (a + bi)(8 + 9i) =
(8a − 9b) + (9a + 8b)i. Therefore 8a − 9b = 1 and 9a + 8b = 3. Solving this system gives
a = 7

29
and b = 3

29
. Alternatively, expand the left side and multiply the right side by 2+5i

2+5i

to get (−a − 2b) + (2a − b)i = 1

29
(−13 + 11i), equate real and imaginary parts, and solve.

Or, divide both sides by −1+2i and simplify the right-hand side to avoid solving any linear
equations.

S10A20.
√

2. Set y = x− π

12
. Then we’re trying to maximize cos

(

y + π

4

)

−cos
(

y − π

4

)

. Ex-
panding this out using the formulas for the cosine of a sum and difference gives cos

(

y + π

4

)

−
cos

(

y − π

4

)

= −
√

2 sin y, so its maximum value is
√

2 (achieved whenever sin y = −1).
S10A21. 120. There are two possible ways a path of length six can go from (0, 0) to

(2, 2): it may consist either of three steps up, two steps right and one step down or of two
steps up, three steps right and one step left. In either case, every path comes from permuting
the six steps in some order. In the first case, there are 6!

3!2!1!
= 60 possible orders, and in the

second case there are 6!

2!3!1!
= 60 possible orders, so in total we have 60 + 60 = 120 paths of

the desired sort.
S10A22. 4. We have x2 − 1 is divisible by 3 if and only if x is not divisible by 3, i.e.,

if and only if x ≡ 1 or x ≡ 2 (mod 3). We have x2 is divisible by 7 if and only if x ≡ 0
(mod 7). Finally, we have x2 +1 is divisible by 5 if and only if x ≡ 2 or x ≡ 3 (mod 5). This
gives us four systems of modular equations to solve: we choose one of the two congruences
for x modulo 3 and one of the two congruences for x modulo 5, and the congruence x ≡ 0
(mod 7). By the Chinese Remainder Theorem, each of these systems leads to a unique
solution modulo 3 · 5 · 7 = 105, and thus to a unique integer solution in the range [1, 105].
These four solutions must be distinct, since they differ in some mod. Thus, our answer is 4.
(The actual solutions are 7, 28, 77 and 98.)

Alternatively, one could just check all 10 multiples of 7 that are not also multiples of 3
to see which ones work.

S10A23. 2. Subtract 25 from both sides and factor as a difference of squares to get
((x − 2)(x − 6) − 5)((x − 2)(x − 6) + 5) = 0. Thus either x2 − 8x + 7 = 0, whose roots
1 and 7 are both real, or x2 − 8x + 17 = 0, whose roots are non-real (the discriminant is
82 − 4 · 17 = −4 < 0). Thus there are exactly two real roots.

S10A24. 784. Let a(m, n) be the number of games that can be played beginning with m

stones in one pile and n in the other. Then we have that a(0, 0) = 1, a(m, n) = 0 if either of
m or n is not a nonnegative integer, and in general
a(m, n) = a(m − 1, n) + a(m − 2, n) + a(m − 3, n) +
a(m, n − 1) + a(m, n − 2) + a(m, n − 3). We can then
use this to compute relatively swiftly the total number
of games. It may help to place the values of a(m, n)
in a table for easy computation, as shown.

a(m, n) 0 1 2 3 4
0 1 1 2 4 7
1 1 2 5 12 26
2 2 5 14 37 89
3 4 12 37 106 277
4 7 26 89 277 784
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S10A25. 1

2
. If Alejandro rolls a 1, the probability is 0. If he rolls a 2, the probability is 1

10
.

If he rolls a 3, the probability is 3

10
. If he rolls a 4, the probability is 6

10
, and if he rolls 5 or 6,

the probability is 1 each. Thus, the overall probability is 1

6
·
(

0 + 1

10
+ 3

10
+ 6

10
+ 1 + 1

)

= 1

2
.

S10A26. 2
√

5. Let the length of the internal tangent be d (so the

2d

1

3

x

d

3 − 1 = 2

length of the external tangent is 2d) and let the distance in question
be x. Then we have x2 = (3−1)2 +(2d)2 and x2 = (3+1)2+d2. Thus
3x2 = 4(16 + d2) − (4 + 4d2) = 60 and so d = 2

√
5. Challenge: can

you show that the two tangent lines in the diagram accompanying
the problem (not this solution) are perpendicular?

S10A27. 5. If we write 45 as a sum of n + 1 consecutive positive integers we have
a + (a + 1) + . . . + (a + n) = 45, so (n + 1)a + n(n+1)

2
= 45 or (n + 1)(2a + n) = 90. Both a

and n must be at least 1, so n + 2a > n + 1 and we can choose n + 1 to be the smaller of
any pair of factors of 90. This leads to n = 1, 2, 4, 5 or 8, associated with a = 22, 14, 7, 5 or
1, respectively, for a total of five expressions.

S10A28. −2 +
√

39

3
. We have that |x + 2| ≤ d if and only if

1

3

1

3

−2 − d ≤ x ≤ −2 + d. Also |x2 − 4| ≤ 1

3
if and only if 11

3
≤ x2 ≤ 13

3
.

Equivalently, |x2 − 4| ≤ 1

3
holds if and only if

√

33

3
≤ x ≤

√

39

3
or

−
√

39

3
≤ x ≤ −

√

33

3
does. Thus, we need to choose the largest value

of d such that [−2 − d,−2 + d] ⊆
[

−
√

39

3
,−

√

33

3

]

∪
[√

33

3
,
√

39

3

]

. Since

the interval [−2 − d,−2 + d] contains a point in the negative part
of this union (specifically, −2), the entire interval must be contained

there. Thus, we want the largest value of d such that −2 − d ≥ −
√

39

3
and −2 + d ≤ −

√

33

3
,

i.e., the largest value d such that d ≤ 2 −
√

33

3
and d ≤ −2 +

√

39

3
. This value is exactly

min
(

2 −
√

33

3
,−2 +

√

39

3

)

. The function f(x) =
√

x is concave-down, so −2 +
√

39

3
< 2−

√

33

3

and thus the answer is −2 +
√

39

3
.

Alternatively, rather than using the concavity of the square root function, note that the
comparison between 2−

√

33

3
and −2 +

√

39

3
is the same as the comparison between 4

√
3 and√

11 +
√

13, which is the same as the comparison between 48 and 11 + 2
√

143 + 13, which is
the same as the comparison between 12 and

√
143, so the latter is smaller than the former.

S10A29.
(

2
√

3

3
, 2

√

3

3

)

,
(

−2
√

3

3
,−2

√

3

3

)

. From the equality of the left-most and right-most

terms, we have a2 − 2ab + b2 = 0, so (a− b)2 = 0 and thus a = b. Then from the equality of

the outer terms with the middle term we have 3a2 = 4 so a = ± 2
√

3

3
.

S10A30. 1561. We divide the octahedron into several pieces and count the points in each
piece separately. First, we consider how many of the coordinates are equal to 0. If all three
coordinates are equal to 0, we have the unique point (0, 0, 0). If two of the coordinates are
equal to zero, the remaining coordinate must be some nonzero value between −10 and 10,
inclusive. This gives 60 total points (twenty of the form (a, 0, 0), twenty of the form (0, b, 0)



and twenty of the form (0, 0, c).) Now suppose that exactly one of the coordinates is equal
to zero, say the z-coordinate. A point (a, b, 0) is on or inside the octahedron if and only if all
four points (±a,±b, 0) are inside the octahedron. So, consider the case that a, b > 0. The
set of points in this quadrant that are also in the octahedron are exactly those points such
that a+b ≤ 10. One can count (for example, by systematic listing or by stars and bars) that
there are exactly

(

10

2

)

= 45 pairs of positive integers that satisfy this condition. Now we also
have to take into account the other possible signs for the coordinates, as well as the cases in
which the x- or y-coordinate is 0; this gives a total of 3 · 4 · 45 = 540 points. Finally, we have
to consider the case in which all coordinates are nonzero. We again have that (a, b, c) is in
the octahedron if and only if all eight points (±a,±b,±c) are in the octahedron. So, let us
first consider the points with a, b, c > 0. We need to count the number of such points that
lie on or below the plane passing through (10, 0, 0), (0, 10, 0) and (0, 0, 10). This plane has
equation x + y + z = 10. Thus, we need to count the number of positive-integer solutions
to the inequality a + b + c ≤ 10. Recall from Problem S10A8 that the number of solutions
of this inequality is precisely

(

10

3

)

= 120. Accounting for signs, the total number of points
in this case is 8 · 120 = 960. Thus in total we have 1 + 60 + 540 + 960 = 1561 points on or
inside the octahedron.

Challenge: let O(n) be the number of points on or inside the regular octahedron with
vertices (±n, 0, 0), (0,±n, 0), (0, 0,±n) and let I(n) be the number of points inside (but not
on the faces, edges or vertices) of the same octahedron. What is the relationship between
these two polynomials? (There is a general phenomenon here which can be considered
the three-dimensional generalization of Pick’s Theorem. The polynomial O(n) is called the
Ehrhart polynomial of the octahedron.)
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