New York City Interscholastic Mathematics League
 Soph-Frosh Division

FALL 2009
Contest 1
Time: 10 Minutes
F09SF1 The average of five numbers is $\frac{1}{3}$ and the average of three of these numbers is $\frac{1}{5}$. Compute the average of the other two numbers.

F09SF2 One leg of a right triangle is length 20. The lengths of the other leg and the hypotenuse are consecutive odd integers. Compute the length of the hypotenuse.

Part II Fall 2009 Contest 1 Time: 10 Minutes
F09SF3 Compute the two-digit number that is 9 times the sum of its digits.
F09SF4 A boat can travel 8 miles per hour in still water. If it can travel 15 miles with the current in the same time it travels 9 miles against the current, compute the rate of the current in miles per hour. Compute the number of ways they can be arranged if all the books on the same subject have to be next to each other.

F09SF6 $\quad A B C D$ is a rectangle and P is a point inside the rectangle. If $P A=3, P B=4, P C=5$, compute $P D$.

New York City Interscholastic Mathematics League
 Soph-Frosh Division

FALL 2009
Contest 2
Time: 10 Minutes
F09SF7 Compute the remainder when 777^{777} is divided by 5 .
F09SF8 A sphere with radius 5 is cut by a plane which is 3 units from the center of the sphere. Compute the area of the cross-section formed.

Part II
FALL 2009
Contest 2
Time: 10 Minutes

F09SF9 Compute the largest prime factor of 9,991 .
F09SF10 If a, b, c, x, y, and z are real numbers such that
$a x+b y+c z=5$
$b x+c y+a z=50$
$c x+a y+b z=500$
and $a+b+c=5$, compute $x+y+z$.

FALL 2009
Contest 2
Time: 10 Minutes

F09SF11 Compute the area of a rectangle whose diagonal is of length 10 and whose length is 5 times its width.

F09SF12 When the numbers 551, 613 and 768 are divided by $a, a>1$ and an integer, they leave a remainder of b. Compute b.

New York City Interscholastic Mathematics League
 Soph-Frosh Division

F09SF13 If $\sqrt{x+2}=4$, compute $(x+2)^{3}$.
F09SF14 Compute the positive value of x such that $x[x]=55$. (Note that $[x]$ denotes the greatest integer that is less than or equal to x. For example, $[1.99]=1$, and $[2]=2$.)
Part II Fall 2009 Contest 3 Time: 10 Minutes

F09SF15 Compute all ordered pairs (x, y) of integers such that $x+y=x y$.
F09SF16 An old printing press can print a newspaper in 10 hours. A new printing press can print a newspaper in 8 hours. Working together, compute how many hours would it take 3 old and 2 new presses to print a newspaper?
Part III Fall 2009 Contest 3 Time: 10 Minutes

F09SF17 If 100! is multiplied out, how many zeroes does it end with?
F09SF18 In right triangle $A B C, \angle C$ is a right angle, M is the midpoint of $A C, N$ is the midpoint of $B C$. If $A N=12$ and $B M=14$, compute $A B$.

New York City Interscholastic Mathematics League
 Soph-Frosh Division
 Contest Number 1
 Fall 2009 Solutions

F09SF6
$\frac{8}{15}$. The sum of the five numbers is $\frac{5}{3}$, the sum of the first three numbers is $\frac{3}{5}$, the sum of the other two numbers is $\frac{5}{3}-\frac{3}{5}=\frac{16}{15}$ and their average is $\frac{8}{15}$.
101. Let x be the length of the other leg and let $x+2$ be the length of the hypotenuse. Then $x^{2}+20^{2}=(x+2)^{2}$. Solve to obtain $x=99$. Then the length of the hypotenuse is $x+2=101$. The result is based on the Pythagorean Theorem.
81. Let t represent the tens digit and u represent the units digit of the answer.

Then $10 t+u=9(t+u)$, so $t=8 u$. Because t and u are digits, $t=8$ and $u=1$, so the requested number is 81 .

Alternative solution:
We know the answer must be a multiple of 9 . Every two-digit multiple of 9 has digit sum equal to 9 , so the answer must be $9 \cdot 9=81$.
2 or 2 miles per hour. Let C be the rate of the current, using the formula $\frac{D}{R}=T$, where as usual $D=$ distance, $R=$ rate, and $T=$ time. The boat's rates with and against the current are $8+C$ and $8-C$, respectively. Because the times for the two trips are the same, $\frac{15}{8+C}=\frac{9}{8-C}$. Solve to obtain $C=2$.
1728. There are $3!=6$ ways of arranging the subjects, $4!=24$ ways of arranging the science books, $3!=6$ ways of arranging the math books, and $2!=2$ ways of arranging the history books. $6 \times 24 \times 6 \times 2=1728$.
$3 \sqrt{2}$. Draw a line through P parallel to $A D$.

$$
\begin{aligned}
& 9-a^{2}=z^{2}=16-b^{2} \\
& x^{2}-a^{2}=y^{2}=25-b^{2} \\
& x^{2}-9=9 \quad x^{2}=18 \quad x=\sqrt{18}=3 \sqrt{2}
\end{aligned}
$$

Note: If P is placed on $A D$, The problem is simplified. $4^{2}-3^{2}=5^{2}-x^{2} \quad x=3 \sqrt{2}$.

Challenge: Show that for any rectangle $A B C D$ and any point P, $P A^{2}+P C^{2}=P B^{2}+P D^{2}$.

New York City Interscholastic Mathematics League
 Soph-Frosh Division

Fall 2009 Solutions
F09SF7 2. The unit digit of 777^{n} goes in cycles of $7,9,3,1,7,9,3,1$ etc. as n increases. Thus the remainder upon division by 5 cycles as $2,4,3,1$. Since the exponent 777 is one more than a multiple of 4 , the requested remainder is 2 .
$\frac{\mathbf{2 5 0}}{\mathbf{1 3}}$ or $\mathbf{1 9} \frac{\mathbf{3}}{\mathbf{1 3}}$. Let $5 x$ be the length and x be the width. Then $(5 x)^{2}+x^{2}=10^{2}$, so
$26 x^{2}=100$. Then the area is $(5 x)(x)=5 x^{2}=5\left(\frac{100}{26}\right)=\frac{250}{13}$.
F09SF12
24. $613=x a+b$ $551=y a+b$ $62=x a-y a=a(x+y)$
Because the three numbers leave the same remainder when divided by a, the difference between any two of them is a multiple of a. Thus a is a divisor of both $613-551=62$ and $768-613=155$. The only numbers that divides both 62 and 155 are 1 and 31, so $a=31$. Divide any of the three number by 31 to find that $b=24$.

New York City Interscholastic Mathematics League Soph-Frosh Division Contest Number 3
 Fall 2009 Solutions

F09SF13

F09SF14

F09SF15 (0,0) and (2,2). The given equation is equivalent to $x y-x-y=0$, thus $x y-x-y+1=1$ so $(x-1)(y-1)=1$. Either $x-1=y-1=1$ or $x-1=y-1=-1$. These give solutions $(0,0)$ and $(2,2)$.

F09SF16

F09SF17

F09SF18
4 $\sqrt{17}$. In $\triangle A C N \quad x^{2}+(2 y)^{2}=144$

In $\triangle M C B(2 x)^{2}+y^{2}=196$
Add the two equations to get:

$$
5 x^{2}+5 y^{2}=340
$$

$$
4 x^{2}+4 y^{2}=A B^{2}=272
$$

$$
A B=\sqrt{272}=4 \sqrt{17}
$$

