NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE Sophomore-Freshman Division Contest Number 1

PART I

FALL, 2004

CONTEST 1

TIME: 10 MINUTES

F04SF1

Compute the largest positive integer less than 100 that has exactly 3 positive integral

factors.

F04SF2

a+b+c=2001, a+b+d=2002, a+c+d=2003, b+c+d=2004

Compute: d-c+b-a.

PART II

FALL, 2004

CONTEST 1

TIME: 10 MINUTES

F04SF3

Compute the total number of squares in a 5 row by 5 column checkerboard.

F04SF4

A car tire was punctured by two pieces of glass. The first puncture alone would cause the tire to be entirely flat in 6 minutes. The second puncture alone would cause the tire to be entirely flat in 9 minutes. Assuming the air leaks out at a constant rate, compute the number of minutes it would take for both punctures together to make the tire entirely flat.

PART III

FALL, 2004

CONTEST 1

TIME: 10 MINUTES

F04SF5

Compute: $\frac{600^2}{301^2 - 299^2}$

F04SF6

 $\left(x + \frac{1}{x}\right)^2 = 5. \text{ Compute: } \left|x^3 + \frac{1}{x^3}\right|.$

ANSWERS:

F04SF1 49

F04SF2 2

F04SF3 55

F04SF4 $\frac{18}{5}$

F04SF5 300

F04SF6

 $2\sqrt{5}$

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE Sophomore-Freshman Division Contest Number 2

PART I	FALL, 2004	CONTEST 2	TIME: 10 MINUTES
F04SF7	each correct equation he s	solved and fined him \$5	vate his son, Mr. Po gave him \$8 for for each incorrect solution. After 26 ute the number of equations his son
F04SF8	A regular polygon of n sid	des has n diagonals. Con	npute n.

PART II	FALL, 2004	CONTEST 2	TIME: 10 MINUTES
F04 SF 9	Compute the largest positive (A proper factor is a factor		nat has exactly 3 proper factors.
F04SF10	In right $\triangle ABC$, $\angle C$ is the two legs is 8. Compute the		ise is 6 and the sum of the

PART III	FALL, 2004	CONTEST 2	TIME: 10 MINUTES
F04SF11	The price of a new car increases by 10%. To the nearest integer, by what percent must the new price be decreased to equal the original price?		
F04SF12	Compute all real x such that	at: $\sqrt{x+1} + \sqrt{x+4} = \sqrt{x+4}$	x+9.

ANSWERS:	F04SF7	10
	F04SF8	5
	F04SF9	323
	F04SF10	7
	F04SF11	9
	F04SF12	0

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE Sophomore-Freshman Division CONTEST NUMBER 3

PART I	FALL, 2004	CONTEST 3	TIME: 10 MINUTES
F04SF13	Two natural numbers di two numbers.	iffer by 2, and their squar	es differ by 100. Find the smaller of the
F04SF14	ages is 90. The daughte sum of the ages of the 3	ers were born 2 years apa	and 3 daughters. The sum of all their rt. The mother's age is 10 more than the age minus the mother's age is the age of ungest daughter.

PART II	FALL, 2004	CONTEST 3	TIME: 10 MINUTES
F04SF15			then picked 1/6 of the pears left by ed. How many pears were in the
F04SF16	A 20 pound sponge is 99 98% water. Compute the		ater evaporates and the sponge is now er the evaporation.

PART III	FALL, 2004	CONTEST 3	TIME: 10 MINUTES
F04SF17	Compute x such that: $\frac{1}{3 \cdot 6}$	9! 5-9-12-15-18-21-24-2	$\frac{1}{7} = x^9 \cdot (n! = 1 \cdot 2 \cdot 3 \cdot \ldots \cdot n)$
F04SF18	x + y + z = 20. Compute that $x < y < z$.	e the number of ordered	triples of positive integers (x, y, z) such

ANSWERS:	F04SF13	24
	F04SF14	5
	F04SF15	225
	F04SF16	10
	F04SF17	1/3
	F04SF18	24

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE Sophomore-Freshman Division Contest Number 1

Fall 2004 Solutions

F04SF1	To have exactly 3 factors, the number must be a perfect square of a prime, since 1 and		
	the number are the other 2 factors. Thus the answer is 49.		

F04SF2 Adding all the left sides and right sides of the equations and dividing by 3 gives us:
$$a+b+c+d=2670$$
. Thus, $a=666, b=667, c=668, d=669$. The answer is 2.

F04SF4 The rates of deflation through the two punctures are
$$\frac{1}{6}$$
 and $\frac{1}{9}$. The combined rate is $\frac{1}{6} + \frac{1}{9} = \frac{5}{18}$. It will take $\frac{18}{5}$ minutes.

F04SF5 =
$$\frac{600 \cdot 600}{(301 - 299)(301 + 299)} = \frac{600 \cdot 600}{2 \cdot 600} = 300$$
.

F04SF6
$$x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right) \left(x^2 - 1 + \frac{1}{x^2}\right) \text{ and } \left(x + \frac{1}{x}\right)^2 = x^2 + 2 + \frac{1}{x^2} = 5 \rightarrow x^2 + \frac{1}{x^2} = 3.$$
Thus $\left(x + \frac{1}{x}\right) \left(x^2 - 1 + \frac{1}{x^2}\right) = \pm \sqrt{5} \cdot 2 = \pm 2\sqrt{5} \rightarrow \left|\pm 2\sqrt{5}\right| = 2\sqrt{5}$

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE

Sophomore-Freshman Division

CONTEST NUMBER 2

Fall 2004 Solutions

F04SF7 Let x be the number of correct answers. Then 8x - 5(26 - x) = 0, 13x = 130 and x = 10.

F04SF8 The number of diagonals of an *n*-gon is $\frac{n(n-3)}{2}$. Thus,

$$\frac{n(n-3)}{2} = n \rightarrow n^2 - 3n = 2n \rightarrow n = 5.$$

F04SF9 To have exactly 3 proper factors, the number must be the product of two primes or must be the cube of a prime number. It must also be as large as possible. The positive square root of 325 is less than 19, so trying primes on both sides, we try $18^2 - 1$, yielding $19 \times 17 = 323$. (5³ is too small and 7³ is too large)

F04SF10 a+b=8, so $64 = (a+b)^2 = a^2 + b^2 + 2ab = c^2 + 2ab = 36 + 2ab$, so 2ab = 28. The area of the triangle is $\frac{1}{2}ab = \frac{2ab}{4} = 7$.

F04SF11 Let the price of the car be p and the percent we are looking for be x. Now, (p+1p)-01x(p+1p)=p. Solving and dividing by p, we get, $1.1-01x(1.1)=1 \rightarrow x=\frac{100}{11}\approx 9$.

F04SF12 Squaring both sides, we get:

$$x+1+x+4+2\sqrt{(x+1)(x+4)} = x+9 \to x-4 = -2\sqrt{(x+1)(x+4)} \to x^2-8x+16 = 4(x^2+5x+4) \to x=0, -\frac{28}{3}$$

Trying $-\frac{28}{3}$, we reject this as an extraneous root, and the answer is 0.

New York City Interscholastic Mathematics League Sophomore-Freshman Division Contest Number 3

Fall 2004 Solutions

F04SF13 Let x and x + 2 be the two numbers.
$$(x+2)^2 - x^2 = 100$$
. Solving gives x = 24.

F04SF14 Let
$$f$$
, m , d_1 , d_2 , d_3 = the ages of the father, mother and the three daughters $f + m + d_1 + d_2 + d_3 = 90$, $d_1 = d_2 - 2$, $d_3 = d_2 + 2$
$$m = 10 + d_1 + d_2 + d_3 = 3d_2 + 10 \rightarrow f + 6d_2 + 10 = 90 \rightarrow f = 80 - 6d_2$$
$$f - m = d_2 \rightarrow f = m + d_2 = 4d_2 + 10$$
$$80 - 6d_2 = 4d_2 + 10 \rightarrow d_2 = 7 \rightarrow d_1 = 5$$

F04SF15 The 150 pears left represents 5/6 of the number Jesse found there, so Jesse found (6/5)(150) = 180 pears. This represents 4/5 of the number Sonia found originally, so there was at first (5/4)(180) = 225 pears.

F04SF16 The sponge originally contains 20 x 1% = .2 pounds of material. If x is the weight of the sponge after evaporation, $.2 = .02x \rightarrow x = 10$.

F04SF17 The fraction reduces and we get: $\frac{1}{3^9} = x^9 \rightarrow x = \frac{1}{3}$.

F04SF18

x =1	y+z=19	$2 \le y \le 9, \ 10 \le z \le 17$	8 triples
x =2	y + z = 18	$3 \le y \le 8$, $10 \le z \le 15$	6 triples
x =3	y+z=17	$4 \le y \le 8, 9 \le z \le 13$	5 triples
x ==4	y+z=16	$5 \le y \le 7, 9 \le z \le 11$	3 triples
x =5	y+z=15	$6 \le y \le 7, \ 8 \le z \le 9$	2 triples

We thus have 24 triples.