

FALL, 2003

New York City Interscholastic Mathematics League .

Sopho	more-Freshman Div	vision Con	TEST NUMBER 1
PART I	FALL, 2003	CONTEST 1	TIME: 10 MINUTES
F03SF1	What percent of $2B$ is $7A$, if A simplest form, in terms of A and	•	(Leave your answer, in
F03SF2	If all the integers from 1 to 300	00 are printed, compute the r	number of 0's that will appear.
PART II	FALL, 2003	Contest 1	TIME: 10 MINUTES

2 /231 - 22	17120, 2000	001,1204 1	
F03SF3	The lengths of the sides of a tr of b for which the triangle is is	•	b-2. Compute all the values
F03SF4	Compute the number of positive	ve integral factors of 3 ⁴ 4 ⁵ 5 ⁶ .	

F03SF5	Average Joe averaged a score of 86 on his 5 math tests. If he averaged a 92 on his first 2 tests, compute the lowest possible average of his final 2 tests. (All tests are scored out of 100 points)
F03SF6	There are 120 five digit positive integers whose digits are the numbers 1, 2, 3, 4, and 5 (no repetition of digits). If all these positive integers are put in increasing order, compute the 26 th positive integer.

CONTEST 1

TIME: 10 MINUTES

F03SF1	350A % OF 350A	Á
103511	$B \rightarrow B$	
F03SF2	792	
F03SF3	%	
F03SF4	385	
F03SF5	73	
F03SF6	21354	
	F03SF3 F03SF4 F03SF5	F03SF1 B 76 of B F03SF2 792 F03SF3 9/5 F03SF4 385 F03SF5 73

PART III

Sophomore-Freshman Division

CONTEST NUMBER 2

PART I		FALL, 2003	CONTEST 2	TIME: 10 MINUTES		
F03SF7	Compute the smallest positive integer that has 12 positive integral factors.					
F03SF8	Given the co	pordinates of $A(3,2)$,	B(4,4), and C(2,3), compute	the area of parallelogram		
PART II		FALL, 2003	CONTEST 2	TIME: 10 MINUTES		
F03SF9	Compute the	e units digit of 200	3 ²⁰⁰³ .			
F03SF10	example, 3,	34243, 959, 1771, 2	vill remain unchanged when its 002 are all palindromes. Con 0000 such that the ten's digit i	npute the number of positive		
PART III	•	FALL, 2003	CONTEST 2	TIME: 10 MINUTES		
F03SF11	Find the sma	allest positive even i	nteger that is both a multiple	of 15 and of 21.		
F03SF12	Alice and Bob played a game by tossing two fair six-sided dice whose faces are painted either red or blue. Alice wins when the two top faces are the same color. Bob wins when the colors are different. Alice has a 50% chance of winning and the first die has 5 red faces and 1 blue face. How many red faces are there on the second dice?					
Answers:	F03SF7 F03SF8 F03SF9 F03SF10	60 3 7 72				

New York City Interscholastic Mathematics League

Sophomore-Freshman Division

CONTEST NUMBER 3

PART I

FALL, 2003

CONTEST 3

TIME: 10 MINUTES

F03SF13

Compute the sum of the coefficients in the expansion of $(x + 2y - z)^3$.

F03SF14

The graph of the line y = 3x + 7 is rotated 270 degrees counter-clockwise around the origin. Express the equation of the new line in the form: y = mx + b.

PART II

FALL, 2003

CONTEST 3

TIME: 10 MINUTES

F03SF15

23x0255y7283 is divisible by both 9 and 11. Compute the ordered pair of the digits (x,y).

F03SF16

An ant starts at the origin of the Cartesian plane and moves one unit at a time either left, right, up, or down. Compute the number of ways for the ant to reach (4,7) in exactly 11 moves.

PART III

FALL, 2003

CONTEST 3

TIME: 10 MINUTES

F03SF17

Two fair six-sided dice are tossed and their sum is less than 10. Compute the probability that their sum is less than 5.

F03SF18

When 2x - 5 is divided by x + 7, the remainder is 10. Compute all possible values of the positive integer x.

ANSWERS:

F03SF13

0

F03SF14

 $y = -\frac{x}{3} + \frac{7}{3}$

F03SF15

(4,4)

F03SF16

330

F03SF17 F03SF18 1/5 22

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE Sophomore-Freshman Division Contest Number 1

SOLUTIONS

F03SF1

$$x\% \cdot 2B = 7A$$
$$x\% = \frac{7A}{2B}$$
$$x = \frac{350A}{B}$$

F03SF2

Imagine every one-digit-number \underline{a} is written as a three-digit number $\underline{00a}$, and every two-digit number \underline{bc} be written $\underline{0bc}$. Then exactly every digit will appear in the one's place, in the ten's place, and in the hundred's place one tenth of the time. This means $3\left(\frac{3000}{10}\right) = 900$ zeroes. However, we have counted the extra zeros we added at the beginning of numbers, so we must subtract 2.9 zeroes for the one-digit numbers and 1.90 zeroes for the two-digit numbers. This leaves us with 900 - 90 - 18 = 792 zeroes.

F03SF3

Case 1: b + 1 = 7 - b implies that b = 3, giving a 4-4-10 triangle. This is a violation of the triangle inequality.

Case 2: b+1=4b-2 implies that b=1, giving a 2-2-6 triangle. This is also a violation of the triangle inequality.

Case 3: 7 - b = 4b - 2 implies that b = 9/5 giving a $\frac{26}{5} - \frac{26}{5} - \frac{14}{5}$ triangle.

This case yields a valid triangle, therefore B has only one value: $\frac{9}{5}$.

F03SF4

The number of factors of a number $n = p^a \cdot q^b \cdot r^c$ for primes p, q, and r is given by the formula (a+1)(b+1)(c+1). In this case, we have $5 \cdot 11 \cdot 7 = 385$ factors.

F03SF5

Assume that Joe scored 100 (the highest possible score) on the third test. Then in order to achieve an average of 86, or a combined score of 430 on his five exams, he must have a combined score of 146 on his final two tests, leading to an average of 73 on the final tests.

F03SF6

The smallest 24 numbers all begin with a 1. The 25th number is 21345. The 26th smallest number is 21354.

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE

Sophomore-Freshman Division

CONTEST NUMBER 2

SOLUTIONS

F03SF7 Consider a number in the form $n = p^a \cdot q^b \cdot r^c$, p, q, r are prime numbers. Then the number of factors of $n = (a+1)(b+1)(c+1) = 12 = 3 \cdot 2 \cdot 2$. To minimize the number we pick 2, 3, and 5 for p, q, and r. Therefore, n = 60.

F03SF8 Solution 1: ABC happens to be a isosceles triangle with a base of $\sqrt{2}$ and legs of $\sqrt{5}$. The height is therefore $\frac{3}{\sqrt{2}}$ by the Pythagorean Theorem, and its area is $\frac{3}{2}$. The area of the parallelogram is twice that of the triangle, so it's 3.

Solution 2: The midpoint of AC is $\left(\frac{5}{2}, \frac{5}{2}\right)$. Since the diagonals of a parallelogram bisect each other the line through $\left(\frac{5}{2}, \frac{5}{2}\right)$ and (4,4) goes through D and $\left(\frac{5}{2}, \frac{5}{2}\right)$ is the midpoint of BD. Therefore D = (1,1). Also, $AB = BC = \sqrt{5}$, so ABCD is rhombus. The area of a rhombus is half the product of the diagonals. $AC = \sqrt{2}$, $BD = 3\sqrt{2}$, so the area of ABCD is $\frac{1}{2} \cdot \sqrt{2} \cdot 3\sqrt{2} = 3$.

F03SF9 Only the 3 of 2003 determines the units digit of the answer. The units digit of the powers of 3 are in cycles of 4 (3, 9, 7, 1). Since the exponent 2003 is 3 more than a multiple of 4, the units digit of the answer is 7.

F03SF10 The condition that the ten's digit is larger than the unit's digit dictates that both 1-digit and 2-digit palindromes are excluded. For both 3 and 4-digit palindromes, 0 cannot be used anywhere also owing to that condition. For either the 3 or 4-digit palindromes, exactly 2 different digits will be used and arranged precisely one way. The number of ways of picking 2 digits without replacement out of 9 is ${}_{9}C_{2} = 36$. Twice that number is 72.

F03SF11 LCM(15, 21, 2) = $2 \cdot 3 \cdot 5 \cdot 7 = 210$.

F03SF12 Let the probability of the second die turning up red be x. Then: $\frac{5}{6}(x) + \frac{1}{6}(1-x) = \frac{1}{2}$ 5x + 1 - x = 3 $x = \frac{1}{2}$

Therefore, there must be exactly $\frac{1}{2} \cdot 6 = 3$ red faces on the second die.

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE Sophomore-Freshman Division Contest Number 3

SOLUTIONS

- F03SF13 To obtain the sum of the coefficients, let x = y = z = 1: $(1 + 2 1)^3 = 8$.
- F03SF14 A rotation of 270 degrees counter-clockwise is a rotation of 90 degrees clockwise about the origin, (a,b) becomes (b,-a). The equation under such a transformation will become x = 3(-y) + 7, or equivalently, $y = -\frac{x}{3} + \frac{7}{3}$.
- F03SF15 Using a divisibility rule for 11 we obtain that: (3+0+5+y+2+3) (2+x+2+5+7+8) = (13+y) (24+x) = y x 11 is divisible by 11 y-x=11m for some integer m. The only such m that will fit here is 0, so y=x. Using a divisibility rule for 9 we obtain that: 3+0+5+y+2+3+2+x+2+5+7+8 = 9n or 37+y+x=36+1+x+y=9n y+x+1=9k for some integer k. The only such k that will fit here is 1 or 2. However, y=x so y=x=4. The solution is (x,y)=(4,4).
- F03SF16 If the ant is to travel to (4,7) in exactly 11 moves, then every move must either be a move up or a move to the right. The number of ways one can choose a path is 11C4, or 330.
- F03SF17 Since their sum must be less than 10, 6 out of the 36 possibilities have been thrown out. The probability that their sum is less than 5 is 6/30 = 1/5.
- F03SF18 Solution 1: $\frac{2x-5}{x+7} = 2 \frac{19}{x+7}$. However the remainder is 10, not -19. We manipulate to get $\frac{2x-5}{x+7} = 2 \frac{29}{x+7} + \frac{10}{x+7}$. Therefore $\frac{29}{x+7}$ must be an integer. Therefore x+7 must divide 29. The expression x+7 must equal -1, 1, -29, or 29. x=22 is the only positive x.

Solution 2: The remainder when 2x - 5 is divided by x + 7 is the same remainder when 2x - 5 - 2(x+7) = -19 is divided by x + 7. Therefore, x + 7 is a factor of |-19 - 9| = 29. Every value of x + 7 except 29 will make x negative, so x = 29 - 7 = 22.