NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE Sophomore-Freshman Division Contest Number 1

PART I	SPRING, 2003	Co	ONTEST I	TIME: 10 MINUTES	
S03SF1	Compute $27^{50} \div 81^{37}$.				
S03SF2		_		e circular region formed by e baseball would be increased	
PART II	Spring, 2003	Co	ONTEST I	TIME: 10 MINUTES	
S03SF3	The average of a and b is 13; the average of b and c is 31; and the average of c and a is 46. Compute the average of a , b , and c .				
S03SF4	Start with 2 cups: Cup A with 100 mL of tea and Cup B with 100 mL of coffee. Take 2 mL from Cup A and mix it into Cup B . Then take 3 mL from Cup B and mix it into Cup A . Finally take 1 mL from Cup A and mix it into Cup B . If in the end Cup A has x mL of tea and Cup B has y mL of coffee, compute $x-y$.				
PART III	Spring, 2003	c	ONTEST I	TIME: 10 MINUTES	
S03SF5	Compute all values of x which satisfy				
	$(x!)^2 = 25(x!) - 24$				
S03SF6	D is the midpoint of hypotenuse AC of right triangle ABC. Line segment BD is drawn. If $AD = \sqrt{29}$ and $AB = 4$, then compute the area of triangle BCD.				
*				•	
ANSWERS:	S03SF1 S03SF2	9 2600			
	S03SF3	30			
	S03SF4 S03SF5	0 0, 1, 4			
	S03SF6	10			

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE Sophomore-Freshman Division Contest Number 2

PARTI .	SPRING, 2003		CONTEST 2	TIME: 10 MINUTES	
S03SF7	A lattice polygon is a polygon whose vertices all lie on points on a Cartesian plane with integer coordinates. Compute the shortest possible diagonal of a lattice rectangle whose area is 18 and whose sides are parallel to the x and y axes.				
.S03SF8	Alice has C cyan marbles, M magenta marbles, Y yellow marbles, and K black marbles. C , M , Y , and K are all greater than or equal to 0 . It is noted that her marbles are all cyan except 3 , all magenta except 3 , and all yellow except 3 . Compute all ordered quadruples (C,M,Y,K) .				
PART II	SPRING, 2003	r.	CONTEST 2	TIME: 10 MINUTES	
S03SF9	Which of the following is the smallest: 4 ¹² , 5 ¹⁰ , or 6 ⁸ ?				
S03SF10	Find all positive integ	ers n for whic	$h n^5 - 1$ is prime.		
		- 12-			
PART III	Spring, 2003	3	CONTEST 2	TIME: 10 MINUTES	
S03SF11	16 teams entered a basketball tournament. If each team continues to play in the tournament until beaten twice, and the tournament ended with a champion in n games, compute all possible values of n .				
S03SF12	The square MATH is lines. Compute OA.		60 inches. HP is 1	56 inches and MAP and HOP are	
ANSWERS:	S03SF7 S03SF8 S03SF9 S03SF10 S03SF11 S03SF12	$3\sqrt{5}$ (1,1,1,1), (0 6^8 2 30, 31 35	,0,0,3)		

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE Sophomore-Freshman Division Contest Number 3

PART I	SPRING, 2003	CONTEST 3	TIME: 10 MINUTES
S03SF13	The graduating class of Springfield Elementary averaged 87 on the final math exam. If the girls of that graduating class averaged a 91 and the boys in that class averaged an 81, compute the ratio of girls to boys in that class.		
S03SF14	Compute the two numbers,	x and y, whose sum, product, a	and quotient (x/y) are equal.
	7		
PART II	SPRING , 2003	CONTEST 3	Time: 10 Minutes
PARTII S03SF15		te circle (r > 0) is equal to the	

PART III	SPRING, 2003	CONTEST 3
S03SF17	The sides of a regular nonago extended to make a 9 pointed diagram. Compute the measurable star.	star as shown in the
S03SF18	Find the greatest integer divide the same remainder in each care.	

TIME: 10 MINUTES

Answers:	S03SF13	$\frac{3}{2}$
	S03SF14	$\frac{1}{2}$, -1
	S03SF15	2
	S03SF16	71
	S03SF17	100
	S03SF18	25

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE

Freshman-Sophomore Division Solutions

Contest 1

S03SF1
$$\frac{27^{50}}{81^{37}} = \frac{(3^3)^{50}}{(3^4)^{37}} = \frac{3^{150}}{3^{148}} = 3^2 = 9.$$

S03SF2 The area is 9 times as big, so the radius is 3 times as big, implying that the volume is 27 times as big. Equivalently, the volume experienced a 2600% increase.

S03SF3
$$a+b+c = \frac{a+b}{2} + \frac{b+c}{2} + \frac{c+a}{2} = 13+31+46 = 90$$
$$\frac{a+b+c}{3} = 30$$

Note that the volume of the liquid in each of the 2 cups is still 100mL, so the amount of coffee in Cup A is 100 - x. Which means that the amount of coffee in Cup B is 100 - (100 - x) = x = y. The difference x - y is 0.

S03SF6 $AC = 2\sqrt{29}$ $BC^2 + AB^2 = AC^2$ $BC^2 = 4^2 = (2\sqrt{29})^2$ BC = 10The area of $\triangle ABC$ is 20.

Area ΔABD + area ΔBCD = area ΔABC

However $\triangle ABD$ and $\triangle BCD$ have equal bases (AD and DC) and the same height and therefore have the same area. Therefore area $\triangle BCD$ = (area $\triangle ABC$)/2 = 10.

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE

Freshman-Sophomore Division Solutions

Contest 2

S03SF7 The possible length and widths of the rectangle are 1 and 18, 2 and 9, and 3 and 6. The one that provides the shortest diagonal is 3 and 6. The length of that particular diagonal is $\sqrt{3^2 + 6^2} = \sqrt{45} = 3\sqrt{5}$.

S03SF8 Let the total number of marbles be T, then T-3=C=M=Y $0 \le C$ and $2C=M+Y \le M+Y+K=T-C=3$ C can be either 0 or 1, so the quadruples are (1,1,1,1) and (0,0,0,3).

S03SF9 The fourth roots of these numbers are: 64, $25\sqrt{5}$, 36 Since $\sqrt{5} > 2$, $25\sqrt{5} > 50 > 36$. The smallest of them is $36^4 = 6^8$.

S03SF10 $n^5 - 1 = (n-1)(n^4 + n^3 + n^2 + n + 1)$ For n = 1, the product is 0
For n = 2, the product is 31 is prime
For n > 2, n - 1 > 1 and $n^4 + n^3 + n^2 + n + 1 > 1$ so the number is composite.
So the answer is 2.

S03SF11 The champion can either be unbeaten or beaten once, so n can be $2 \cdot 15$ or $2 \cdot 15 + 1$ 30, 31.

S03SF12 In right Δ HMP $60^2 + \text{MP}^2 = 156^2$ MP² = 20736

MP = 144

ΔHMP is similar to ΔOAP

$$\frac{HM}{MP} = \frac{OA}{AP}$$

$$\frac{60}{144} = \frac{OA}{84}$$

$$OA=35$$

NEW YORK CITY INTERSCHOLASTIC MATHEMATICS LEAGUE Freshman-Sophomore Division Solutions

Contest 3

S03SF13 Suppose there are G girls and B boys, then 91G + 81B = 87(G+B). So 4G = 6B, or $\frac{G}{B} = \frac{3}{2}$

S03SF14
$$xy = x/y$$
, so $xy^2 = x$ and $xy^2 - x = 0$, $x(y^2-1) = 0$ and $x = 0$ or $y = -1, 1$

Also
$$x + y = xy$$
. If $x = 0$, then $y = 0$ and x/y is undefined.

If y = 1, then x + 1 = x. This equation has no solution.

If
$$y = -1$$
, then $x - 1 = -x$. Therefore $x = -1/2$.

The answer is 1/2, -1

S03SF15 Since $\pi r^2 = r$, we have $\pi r^2 - r = 0 = (\pi r - 1)(r)$ r cannot be 0, so r must be $\frac{1}{\pi}$ The circumference is $2\pi r = 2$

S03SF16 Any such number is of the form 2²7²k² where k is a positive integer

Therefore $1 \le 2^2 7^2 k^2 \le 1,000,000$

Taking the square root gives $1 \le (2)(7)k \le 1000$

Dividing by 14 gives $1 \le k \le 71$. Therefore the answer is 71.

Extending the sides of the regular 9-gon produces 9 congruent isosceles triangles in its exterior. If we let x denote the measure of the base angle, then 9x = 360, because the sum of the measures of the exterior angles of any n-gon is 360. So x = 40, and the measure of the angle at each point of the star is 180 - 40 - 40 = 100.

S03SF18 Let d be the divisor, r be the remainder and q₁, q₂, q₃ be the quotients when d divides respectively 364, 414, and 539.

$$414 = dq_2 + r$$

 $364 = dq_1 + r$

Subtracting gives $50 = dq_2 - dq_1 = d(q_2 - q_1)$. Therefore d divides 50.

$$539 = dq_3 + r$$

$$414 = dq_2 + r$$

Subtracting gives $125 = d(q_3-q_2)$. Therefore d divides 125.

The greatest integer dividing 50 and 125 is 25. The answer is 25.