	4	~	
CENTOD	Δ.	DIVISION	1
DEILING	\mathbf{r}	TATA TOTAL	

CONTEST NUMBER ONE

PART I	SPRING, 2000	CONTEST 1	TIME: 10 MINUTES
S00S1	If $A = 2^{x} + 2^{-x}$ and $B = 2^{x} - 2^{-x}$, compute the value of A 2	- B ² .
S00S2	Equilateral triangle ABC has sides drawn. The area in the interior of expressed in $a + b\pi$ form. Compute	triangle ABC but exterior t	
PART II	Spring, 2000	CONTEST 1	TIME: 10 MINUTES
S00S3	WY2K, a radio station, is holding inclusive. Listeners may guess on high, low or just right. Future guestest number of guesses needed	ly once. The D.J. tells the lesses may be made using the	listeners if the guess was is information. What is the
S00S4	k! terminates with exactly 496 ze	ros. Find the largest k that	satisfies this condition.
PART III	Spring, 2000	CONTEST 1	TIME: 10 MINUTES
80085	Compute all real value(s) of x that	at satisfy:	
	$ x^2 + 7x + 4 = x + 3$		
S00S6	Square MATH, with MA = 4, has the inscribed circle and sides MA circle.		7. 10 C -
Answers:	S00S1 4 S00S2 $(\sqrt{3}, -\frac{1}{2})$ S00S3 11 S00S4 1999 S00S5 $x = -1, -3 + 2\sqrt{2}$ S00S6 $6 - 4\sqrt{2}$		

SENIOR A DIVISION

CONTEST NUMBER TWO

PART I	SPRING, 2000	CONTEST 2	TIME: 10 MINUTES	
S00S7	Two fair dice are rolled. If the dice show the same values then one value is the tens'digit and the other the units' digit of a two-digit number. If the dice show different values then the larger value is the tens'digit and the smaller value the units' digit of a two-digit number. Compute the average of all possible two-digit numbers.			
S00S8	$\sqrt{43-15\sqrt{8}} = a+b\sqrt{c}$ and $a > c$. that satisfies this equation if $a > c$.	Compute the ordered t	riple of integers (a, b, c)	

PART II	Spring, 2000	CONTEST 2
S00S9	Find the value(s) of k such that 2 (2000 2 - 1999 2 + 1998 2 - 1997 2	$++2^{2}-1^{2})=k^{2}+k$
S00S10	A fourth order polynomial that has the may be written as $aX^4 + bX^3 + cX$. Compute $a + b + c + d + e$.	ne following graph $^2 + dX + e$.

TIME: 10 MINUTES

PART III	SPRING, 2000	CONTEST 2	TIME: 10 MINUTES
S00S11	\triangleleft A and \triangleleft B are both acute angles. degrees, $m \triangleleft A = x^2$ and $m \triangleleft B = 3x$ all value(s) of x such that sin A = cos	+80. Compute	G. K. A. M.
S00S12	Five congruent circles, with radius r , The radii overlap a distance of k . GA = AM = MS = ES = EA = GE = Compute k/r .		ÉŚ

ANSWERS:	\$00S7	46
	S00\$8	(5,-3,2)
	S00S9	2000,-2001
	S00S10	9/2
-	S00S11	-5, 2
	S00S12	$2 - \sqrt{3}$

	SPRING, 2000	CONTEST 3	TIME: 10 MINUTES
Compute	1999 ³ - 1000 ³ - 999 ³ 1999 (1000) (999)		*
$\sin x = a. E$	xpress $\sin 3x$ in terms of a .		
	Spring, 2000	CONTEST 3	TIME: 10 MINUTE
The area ins	ide the square but outside t		
choice, 2 pts is sure of 10	for each question omitted answers but wants to score	and 0 pts per wrong ch 100 or more points. H	oice. Toby Ann Aimetaker low many questions should
	SPRING, 2000	CONTEST 3	TIME: 10 MINUTE
-		d 1999!!! = 1 × 3 × 5	1997 × 1999
	er of a sector of a circle is that will maximize the area		imber of feet in the radius, i
	Square DEF The area ins Compute the On a 30 que choice, 2 pts is sure of 10 she guess or 1999! = 1 × If 1999!!!	SPRING, 2000 Square DEFG, with sides of length 2, h The area inside the square but outside t Compute the ordered pair (a, b) . On a 30 question multiple choice test w choice, 2 pts for each question omitted is sure of 10 answers but wants to score she guess on to have the greatest chance SPRING, 2000 1999! = 1 × 2 × 3 × 1998 × 1999 an If 1999!!! = 1999!, compute a. (a, b) .	Square DEFG, with sides of length 2, has unit circles centered. The area inside the square but outside the circles may be expressionally compute the ordered pair (a, b) . On a 30 question multiple choice test with 5 choices, a student choice, 2 pts for each question omitted and 0 pts per wrong choices sure of 10 answers but wants to score 100 or more points. It she guess on to have the greatest chance of scoring at least 100 contests and 1999!! = $1 \times 2 \times 3 \times 1998 \times 1999$ and $1999!!! = 1 \times 3 \times 5$. If $1999!!! = 1999!! = $

999

r = f/4 feet

S00S17

S00S18

SENIOR A DIVISION			CONTEST NUMBER FOUR		
PART I	Spring, 2000	CONTEST 4	TIME: 10 MINUTES		
S00S19	$(1999)^4 + 4 \times (1999)^3 + 6 \times (1999)^2 + 4 \times (1999) + 1 = 2000^n$. Compute n. $(45^2 - 5^2)$				
S00S20	Two rectangles are similar. The first rectangle's area is cut in half. The new rectangle's area is cut in half and so on (infinitely). The second rectangle has an area equal to the sum of the area of the first rectangle and the areas of all the halved rectangles. The larger rectangle's length is k times the smaller rectangle's length. Compute k .				
PART II	SPRING, 2000	Contest 4	TIME: 10 MINUTES		
S00S21	A Tic-Tac-Toe board is a square board containing 3 rows of 3 boxes (9 boxes total). A player wins if they can get 3 boxes in a row vertically, horizontally or diagonally. A chicken randomly chooses 3 boxes out of the nine. Compute the probability that the chicken wins.				
S00S22	Three vertices of parallelogram ABCD are (-1, 3), (3, 2) and (1, 0). The fourth vertex of the parallelogram is point D. The three possible coordinates for point D are the vertices of a triangle. Compute the area of the triangle.				
PART III	SPRING, 2000	Contest 4	TIME: 10 MINUTES		
S00S23	In Cube NEWYORKA, each edge has a length of 2. The cube has 8 unit spheres each centered on a vertex of the cube. The volume enclosed by the cube but outside the spheres may be expressed in $a + b\pi$ form. Compute the ordered pair (a, b) .				
S00S24	Liz, Ralph and Tommy are play she tosses an even number, Ralp tosses a 1. The die is rotated fi Tommy to Liz, etc. until one play wins.	ph wins if he tosses a from Liz to Ralph to T	3 or 5, and Tommy wins if he ommy to Liz to Ralph to		
ANSWERS:	S00S19 3_				
	S00S20 $\sqrt{2}$ S00S21 2/21				
	S00S22 20				
	S00S23 (8, -4/3) S00S24 1/13				

SENIOR A DIVISION

CONTEST NUMBER FIVE

PART I	SPRING, 2000	CONTEST 5	TIME: 10 MINUTES
S00S25	Compute the value of the following	$\sum_{k=1}^{1000} (\log_2 2k) - \sum_{k=1}^{1000} (\log_2 k)$)
\$00\$26	Express the sum of the following se $\frac{1}{3}$ + $\frac{2}{9}$ ÷ $\frac{3}{27}$ + $\frac{4}{81}$ + $\frac{5}{243}$ + $\frac{5}{243}$		

SPRING, 2000 CONTEST 5 TIME: 10 MINUTES
 S00S27 In a small town, called Bullseye, the avenues are concentric circles. Between two such avenues is 2000 π square yards of land. If each of the avenues is an integral distance from the center, compute the number of possible distances that may exist between the two avenues.
 S00S28 Compute all real value(s) of k, such that the system of equations below has no solution.
 k X + 3Y + 3Z = 1000
3X + kY + 3Z = 900
3X + kZ = 100

ANSWERS: \$00\$25 1000

\$00\$26 3 / 4

\$00\$27 6

\$00\$28 k= 3, -6

\$00\$29 8

\$00\$30 a= 3, 9

SOLUTIONS

- S00S1

 Answer: 4. Method I: Let $A + B = 2*2^x$ and $A B = 2*2^x$ then $A^2 B^2 = (A+B)(A-B) = 4(2^x)(2^{-x}) = 4.$ Method II: Without loss of generality, since x can be any value, choose x = 0, then A = 2 and B = 0. $A^2 B^2 = 4$.
- S00S2 Answer: $(\sqrt{3}, -\frac{1}{2})$.

 The area of an equilateral triangle = $s^2\sqrt{3}/4$.

 The side has a length of 2. .. A triangle = $\sqrt{3}$.

 The area unshaded = $3 A_{\text{sector}} = A_{\text{semicircle}} = \frac{1}{2} \pi r^2 = \frac{1}{2} \pi$ $A_{\text{shaded}} = A_{\text{triangle}} A_{\text{semicircle}}$... Area shaded = $\sqrt{3} \pi/2$
- S00S3 Answer: 11. With each successive guess, the strategy is to split the remaining numbers in half. If x = the number of guesses then 2^x numbers can be separated into two equal or near equal halves. So $2^x > 2000$ will guarantee that we guess the correct number. x = 11 is the least integral value.
- Answer: 1999. The number of zeros at the end of a number is determined by the number of factors of 10 (or 2*5). It is obvious that there are more 2s than 5s in k!...the number of 5s will limit the # of zeros. 5! has 1 zero, 25! has 6 zeros, 125! has 31 zeros, 625! has 156 zeros. To attain 496 zeros, we need 3*625! (468 zeros) 0*125! (0 zeros) 4*25! (24 zeros) and 4*5! (4 zeros) :. 3*625 + 4*25 + 4*5 = 1995. We can add 4 more before the next factor of 5 would be added at 2000 :. 1999.
- Sooss Answer: x = -1, $-3 + 2\sqrt{2}$. If $|x^2 + 7x + 4| = x + 3$ then either $x^2 + 7x + 4 = x + 3$ or $-(x^2 + 7x + 4) = x + 3$ $\therefore x^2 + 6x + 1 = 0$ $\therefore x^2 + 8x + 7 = 0$ $x = -3 \pm 2\sqrt{2}$ x = -1, -7 $|x^2 + 7x + 4| \ge 0$ so $x + 3 \ge 0$, \therefore reject $x = -3, -2\sqrt{2}$ and -7.
- S00S6

 Answer: $r = 6 4\sqrt{2}$. Method I From right triangle ABC, $(x+r)^2 + (x+r)^2 = (2x)^2$ D is the midpoint of MA \therefore AD = 2x + r = 2. Solving the two equations simultaneously gives us two answers $r = 6 \pm 4\sqrt{2}$ we must reject $r = 6 + 4\sqrt{2}$ because 0 < r < 2. $\therefore r = 6 4\sqrt{2}$.

CONTEST NUMBER TWO

SOLUTIONS

- S00S7 Answer: 46.The possibilities include 11, 21, 22, 31, 32, 33, 41, 42, 43, 44, 51, 52, 53, 54, 55, 61, 62, 63, 64, 65, and 66. Therefore the total is 966 in 21 possible rolls. The average roll is 966 / 21 which reduces to 46.
- S00S8 Answer: (5, -3, 2). $\sqrt{43 15}\sqrt{8} = a + b\sqrt{c}$ so square both sides $a^2 + b^2 c \div 2ab\sqrt{c} = 43 15\sqrt{8}$ thus $a^2 + b^2 c = 43$ and $2ab\sqrt{c} = -15\sqrt{8}$ so c is even and $a^2 \le 43$ Since c is even, a must be odd because $a^2 +$ even number = 43, a may be 1, 3 or 5 If a = 1 then $b^2 c = 42$ which yields nonintegral values for b and c. If a = 3 then $b^2 c = 34$ which yields nonintegral values for b and c. Only a = 5 works, giving b = -3 and c = 2.
- S00S9 Answer: 2000 and -2001. 2 (2000 2 - 1999 2 + 1998 2 - 1997 2 + ... +2 2 - 1 2) = k^2 + k2 (2000 2 - 1999 2) + (1998 2 - 1997 2) + ... + (2 2 - 1 2)) = k^2 + k2 (2000 + 1999)(2000 - 1999) + ... + (2 + 1)(2 - 1)) = k^2 + k2 (2000 + 1999 + 1998 + ... + 3 + 2 + 1) = 2 (2000 * 2001 / 2) = 2000* 2001 2000 * 2001 = k^2 + k = k (k + 1) so k = 2000 or -2001
- S00S10 Answer: 9/2. F $(X) = a(X - r_1)(X - r_2)(X - r_3)(X - r_4)$, where r_1, r_2, r_3, r_4 are the roots of F From the graph F has a double root at X = -2, and a single root at X = 2, 3. F(X) = a(X + 2)(X + 2)(X - 2)(X - 3)F(-1) = a(1)(1)(-3)(-4) = 3 so a = 1/4Now find a + b + c + d + e = F(1) = 1/4(3)(3)(-1)(-2) = 9/2
- S00S11 Answer: -5 and 2. Since $\sin A = \cos B$, A and B are complementary A + B = 90. $\therefore x^2 + 3x + 80 = 90 \text{ or } x^2 + 3x - 10 = 0$ $(x + 5)(x - 2) = 0 \therefore x = -5 \text{ or } 2$
- S00S12 Answer: 2 $\sqrt{3}$. Triangle AGE is equilateral. \angle BGA is 30° because BG bisects \angle EGA see symmetry of figure to right From right triangle GBC, $(r - \frac{1}{2}k)^2 + (\frac{1}{2}r)^2 = r^2$ $\therefore r - \frac{1}{2}k = \sqrt{3}r/2$ Or $k = 2r - \sqrt{3}r = (2 - \sqrt{3})r$ $\therefore k/r = 2 - \sqrt{3}$.

SOLUTIONS

S00S13 Answer: 3. Let x = 1000 and y = 999 then the expression becomes $\frac{(x+y)^3 - x^3 - y^3}{(x+y)xy} = \frac{x^3 + y^3 + 3x^2y + 3xy^2 - x^3 - y^3}{x^2y + xy^2} = \frac{3x^2y + 3xy^2}{x^2y + xy^2} = 3.$

S00S14 Answer: $3a - 4a^3$. Use the double angle formulas, $\sin 2X = 2 \sin X \cos X$, $\cos 2X = 1 - 2 \sin^2 X$, also the Pythagorean identity $\sin^2 X + \cos^2 X = 1$ and $\sin (X+Y) = \sin X \cos Y + \cos X \sin Y$. Then $\sin 3X = \sin (2X+X) = \sin 2X \cos X + \cos 2X \sin X = 2\sin X \cos^2 X + (1-2\sin^2 X) \sin X$ $\therefore \sin 3X = 2a(1-a^2) + (1-2a^2)a = 3a - 4a^3$

S00S15 Answer: (4, -1). The area of the square = s^2 . The side has a length of 2. \therefore A square = 4 The area unshaded = $4 \text{ A}_{\text{sector}} = A_{\text{circle}} = \pi \text{ r}^2 = \pi$ $A_{\text{shaded}} = A_{\text{square}} - A_{\text{circle}}$ \therefore Area Shaded = $4 - \pi$

S00S16 Answer: 5. To break 100 points, the minimum number right is 14 (with 15 or 16 blank).

If you guess on 4, you must get all 4 correct.

Probability = (1/5) 4 = 1/625

If you guess on 5, then either all 5 right (1/5) or 4 right and 1 wrong ${}_{5}C_{1}$ (1/5) 4 (4/5) Probability = 21/3125.

If you guess on 6, then either all 6 right $(1/5)^6$ or 5 right and 1 wrong ${}_6C_1$ $(1/5)^5$ (4/5) Probability = 5/3125. Four right and two wrong gives you a score of 98.

If you guess on 7, then either all 7 right $(1/5)^{7}$ or 6 right and 1 wrong ${}_{7}C_{1}(1/5)^{6}(4/5)$ Or 5 right and 2 wrong ${}_{7}C_{2}(1/5)^{5}(4/5)^{2}$. Probability < 21/3125

If you continue to guess, the probability decreases further.

.: You should guess on 5 answers to have the highest probability of breaking 100.

S00S17 Answer: 999. 1999! = $1 \times 2 \times 3 \times ...$ 1998 × 1999 and 1999!!! = $1 \times 3 \times ...$ 1997 × 1999

: 1999! = $1999!!! \times 2 \times 4 ...$ 1996 × 1998 = $1999!!! \times 2^{999} \times (1 \times 2 \times 3 \times ... \times 999)$ Solving for 1999!!! = 1999!!! : a = 999.

SENIOR A DIVISION

CONTEST NUMBER FOUR

÷

SOLUTIONS

- S00S19 Answer: 3. $(x+1)^4 = x^4 + 4x^3 + 6x^2 + 4x + 1$, let x = 1999 then $(1999)^4 + 4 \times (1999)^3 + 6 \times (1999)^2 + 4 \times (1999) + 1 = 2000^4$. $45^2 - 5^2 = (45 + 5)(45 - 5) = 50 \times 40 = 2000$ thus $2000^4 / 2000 = 2000^3$
- S00S20 Answer: $\sqrt{2}$. If A = A smaller rectangle = base * height or b* h then A larger rectangle = $(\alpha b)(\alpha h) = \alpha^2 b*h$ where α = constant of similitude and A larger rectangle = A + $\frac{1}{2}$ A + $\frac{1}{4}$ A + ... = $\frac{A}{4}/(1 \frac{1}{2}) = 2A$ giving us $\alpha^2 = 2$ and α is positive ... $\alpha = \sqrt{2}$.
- S00S21 Answer: 2 / 21. There are 8 ways to win (3 rows, 3 columns and 2 diagonals). The chicken can select 3 boxes ₉C₃ or 84 ways.
- S00S22 Answer: 20. The three points that would make ABCD a parallelogram are E (1, 5), F (-3, 1), and G (5, -1). A, B, C are the midpoints of sides EF, EG and FG respectively. The area of ΔEFG is 4 times the area of ΔABC or 20.
- S00S23 Answer: (8, -4/3). Each sphere shares 1/8 of its total volume with the cube. Since there are 8 spheres, we need to subtract the volume of the sphere from the volume of the cube. Volume cube = $2^3 = 8$ Volume sphere = $4(1)^3 \pi / 3 = 4\pi / 3$. Volume cube Volume sphere = $8 4\pi / 3$
- S00S24 Answer: 1 / 13. P(T wins in 1st rd) = P (L loses) *P(R loses) * P(T wins) = 12 / 6³
 P(T wins in 2nd rd) = P(all lose in 1 rd) * P (L loses) *P(R loses) * P(T wins) = 720 / 6⁶
 P(T wins in 3rd rd) = (P(all lose in 1 rd))² * P (L loses) *P(R loses) * P(T wins) = 43200 / 6⁹ or 60 / 6³ * P (T winning in 2nd rd)
 P(T wins game) = $\frac{12}{6^3} + \frac{12}{6^6} + \frac{12}{6^9} + \frac{12}{156} + \frac{12}{15} = \frac{1}{156}$

SENIOR A DIVISION

CONTEST NUMBER FIVE

SOLUTIONS

S00S25 Answer: 1000 Log b - log a = log (b / a) so $\sum_{k=1}^{1000} (\log_2 2k) - \sum_{k=1}^{1000} (\log_2 k) = \sum_{k=1}^{1000} \log_2 2$. Since $\log_2 2 = 1$, $\sum_{k=1}^{1000} (\log_2 2k) = \sum_{k=1}^{1000} (\log_2 2k) =$

S00S26 Answer: 3/4. Method I: 1 + 3 27 9 243 81 18 81 = 3 1 + 1 + **Method II**: Let N = 1 + 2 + 3 + 4 + ... +3 9 27 81 Let 3N = 1 + 2 + 3 + 4 + ...3 9 1+2+3+...

- S00S27 Answer: 6. $a^2\pi b^2\pi = 2000\pi$ or $a^2 b^2 = (a + b)(a b) = 2000$ only a b = 2, 4, 8 10, 20, and 40 yield integral answers for a, b and d (d = a-b). Therefore the answer is 6.
- S00S28 Answer: k = 3, -6. By summing the three equations (kX + 3Y + 3Z = 1000, 3X + kY + 3Z = 900, and 3X + 3Y + kZ = 100), we get (k + 6) (X + Y + Z) = 2000 if k = -6 then there is no solution. Also, if k = 3 there is no solution the equations are inconsistent.
- S00S29 Answer: 8. The sum of the interior angles may be summed two ways. First, by using 180 (n-2) and second 100 + 110 + 120 + ... + (100 + 10(n-1)) = 100n + 10 n (n-1) / 2. So 180 (n-2) = 100n + 10 n (n-1) / 2 or $180n 360 = 100n + 5n^2 5n$ which simplifies to $n^2 17n + 72 = (n-8)(n-9) = 0$ so n=8 or 9. 9 is rejected or the largest angle would be 180° .
- S00S30 Answer: 3 or 9. $\log_9 X^2 = \log X^2 / \log 3^2 = 2 \log X / 2 \log 3 = \log_3 X = a$ \therefore the equation becomes $(a-3)^2 + (a-9)^2 = (2a-12)^2$ If $p^2 + q^2 = (p+q)^2$, then either p = 0 or q = 0. Since a-3+a-9=2a-12 either a-3=0 or a-9=0 so a=3 or 9=0

Dear Math Team Coach,

Enclosed is your copy of the Spring, 2000 NYCIML contests that you requested on the application form.

The following questions had different answers than the given one or were eliminated from the competitions.

Senior A Substitute Source Substitute Subst

Have a great summer! MATH IS # 1

Sincerely yours,

Richard Geller

Secretary, NYCIML