

SENIOR B DIVISION

CONTEST NUMBER ONE

FALL 1999

PART I: 10 minutes

NYCIML Contest One

Fall 1999

F99SB1. Compute $\log_2 8\sqrt{2}$ with no logarithms in the answer.

F99SB2. Solve for x: $2x + \sqrt{x} - 1 = 0$

PART II: 10 minutes

NYCIML Contest One

Fall 1999

F99SB3. How many integers greater than 4000 can be formed using the digits 1, 3, 5, 7 without repetition?

F99SB4. Two circles with radii 3 and 12 are externally tangent. A line, not through the point of tangency of the two circles, is tangent to both circles. Compute the distance between the two tangent points on the line.

PART III: 10 minutes

NYCIML Contest One

Fall 1999

F99SB5. Two different integers are chosen from the integers between 1 and 20, inclusive. Compute the probability that their sum is odd.

F99SB6. How many obtuse triangles, whose sides have integral length, have two sides of length 9 and 12?

ANSWERS:

- 1. 7/2
- 2. 1/4
- 3. 12
- 4. 12
- 5, 10/19
- 6.9

SENIOR B DIVISION

CONTEST NUMBER TWO

FALL 1999

PART I: 10 minutes

NYCIML Contest TWO

Fall 1999

F99SB7. If $\frac{10^{30}}{20^{15}}$ is reduced to p^q , where p is a prime number, compute p+q.

F99SB8. Equilateral triangle ABC has sides of length 12. Point A is on a circle, \overline{BC} is tangent to the circle at M, the midpoint of \overline{BC} . If D is the point of intersection of the circle and \overline{AC} , compute DC.

PART II: 10 minutes

NYCIML Contest TWO

Fall 1999

F99SB9. David, Jan, Arthur, and Zardosht are lined up randomly in a row. Compute the probability that David and Jan are next to each other.

F99SB10. Find the sum of all proper fractions whose denominator is less than or equal to 50. $\left(\frac{1}{2} + \frac{1}{3} + \frac{2}{3} + \frac{1}{4} + \frac{2}{4} + \frac{3}{4} + \dots + \frac{49}{50}\right)$.

PART III: 10 minutes

NYCIML Contest TWO

Fall 1999

F99SB11. The sides of a triangle are 5, 12, 13. Compute the length of the shortest altitude in the triangle.

F99SB12. Compute the sum of the infinite series $\frac{1}{7} + \frac{2}{7^2} + \frac{3}{7^3} + ... + \frac{n}{7^n} + ...$

ANSWERS:

7. 20

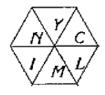
8. 3

9. 1/2

10. 1225/2

11.60/13

12.7/36



SENIOR B DIVISION

CONTEST NUMBER THREE

FALL 1999

PART I: 10 minutes

NYCIML Contest THREE

Fall 1999

F99SB13. In a group of 32 students, 17 students take French and 19 students take biology. If 11 students take both French and biology, how many take neither?

F99SB14. The equations $y = 2x^2$ and y = -4x + k have exactly 1 common solution. Compute k.

PART II: 10 minutes

NYCIML Contest THREE

Fall 1999

F99SB15. Compute the smallest positive integer x for which 12250x is the square of an integer.

F99SB16. In a rhombus, one diagonal is twice the length of the other. If the area of the rhombus is A, express the perimeter of the rhombus in terms of A in simplest form.

PART III: 10 minutes

NYCIML Contest THREE

Fall 1999

F99SB17. Find the sum of the coefficients of the terms in the expansion of $(3x-1)^7$.

F99SB18. A triangle with sides 10, 12, and 12 is inscribed in a circle. Compute the radius of the circle.

ANSWERS:

13.7

14. -2

15. 10

16. $2\sqrt{5}A$

17. 128

18. $\frac{72\sqrt{119}}{119}$

SENIOR B DIVISION

CONTEST NUMBER FOUR

FALL 1999

PART I: 10 minutes

NYCIML Contest FOUR

Fall 1999

F998B19. Compute the length of a chord which is 5 units from the center of a circle with radius 8.

F99SB20. If p and q are the roots of $3x^2 - 11x + 4 = 0$, compute $p^3q + pq^3$.

PART II: 10 minutes

NYCIML Contest FOUR

Fall 1999

F998B21. Compute the volume of a rectangular solid if the areas of three of its faces are 20, 25 and 80.

F99SB22. Compute the area of a regular hexagon that is circumscribed around a circle of radius 12.

PART III: 10 minutes

NYCIML Contest FOUR

Fall 1999

F99SB23. Compute sin 195° in simplest radical form.

F99SB24. To the nearest second, what is the first time after midnight that the hands of the clock will be perpendicular?

ANSWERS:

19. $2\sqrt{39}$

20, 388/27

21. 200

22. $288\sqrt{3}$

23.
$$\frac{\sqrt{2}-\sqrt{6}}{4}$$

24, 12:16:22

SENIOR B DIVISION

CONTEST NUMBER FIVE

FALL 1999

PART I: 10 minutes

NYCIML Contest FIVE

Fall 1999

F99SB25. A man can paint a room in 8 hours while his wife would take 6 hours to paint the same room. Compute the number of hours it will take them to paint the room if they work together.

F99SB26. Compute all possible ordered pairs of positive integers (x,y) such that $x^2 - y^2 = 45$.

PART II: 10 minutes

NYCIML Contest FIVE

Fall 1999

F99SB27. In triangle ABC, tan A=1/4, tan B=3/4. Compute tan C.

F99SB28. Compute the coefficient of x^4 in the expansion of $(x-2)^7$.

PART III: 10 minutes

NYCIML Contest FIVE

Fall 1999

F99SB29. What is the units digit of 37^{73} ?

F99SB30. 3531, is the square of 51, where b is the base. Find b.

ANSWERS:

25. 24/7

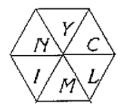
26. (7,2), (9,6), (23,22)

27. –(16/13)

28. -280

29. 7

30. 7



SENIOR B DIVISION

CONTEST NUMBER ONE

FALL 1999

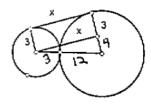
SOLUTIONS

F99SB1. Let
$$\log_2 8\sqrt{2} = x$$
. $2^x = 8\sqrt{2} = 2^{\frac{7}{2}} \to x = \frac{7}{2}$

F99SB2. Let
$$y = \sqrt{x} \to 2y^2 + y - 1 = 0 \to (2y - 1)(y + 1) = 0 \to y = -1$$
, $y = \frac{1}{2} \to x = \frac{1}{4}$ is the only solution.

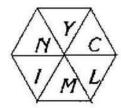
F99SB3. There are 2 digits that can go in the thousands place. Once that is chosen, the remaining 3 can be arranged in 3! ways. 2x3!=12.

F99SB4. Draw a perpendicular from the center of the small circle to the radius of the larger as shown. $9^2 + x^2 = 15^2 \rightarrow x = 12$



F99SB5. One integer must be odd, the other even. The number of such pairs is 10x10=100. The number of all possible pairs is $20C_2$, thus the probability is $\frac{10}{19}$.

F99SB6. Since c>a+b, the only possible triangle will have x, the third side $4 \le x \le 20$. In order to be obtuse, the largest side c must satisfy $c^2 > a^2 + b^2$. This will happen if the third side is 4, 5, 6, 7 or 16, 17 18, 19, 20. There are 9 values.



SENIOR B DIVISION

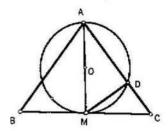
CONTEST NUMBER TWO

FALL 1999

SOLUTIONS

F99SB7.
$$\frac{10^{30}}{20^{15}} = \frac{2^{30}5^{30}}{2^{30}5^{15}} = 5^{15} \rightarrow p + q = 20$$

F99SB8. Draw MD. ∠ ADM=90° (inscribed in a semicircle), ∠ C=60° MC=6, CD=3



F99SB9. Half of the time they are next to each other, thus the answer is ½. (you can examine the sample space)

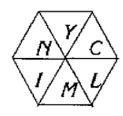
F99SB10. Combining all fractions with like denominators, this becomes an arithmetic progression, first term $\frac{1}{2}$, common difference $\frac{1}{2}$, 49 terms.

$$S = \frac{49}{2} \left(2 \cdot \frac{1}{2} + 48 \cdot \frac{1}{2} \right) = \frac{49}{2} \left(25 \right) = \frac{1225}{2}$$

F99SB11. Since this is a right triangle, the shortest altitude will be the altitude to the hypotenuse. Since the area $=\frac{1}{2} \cdot 5 \cdot 12 = 30$, $\frac{1}{2} \cdot 13h = 30 \rightarrow h = \frac{60}{13}$

F99SB12. Set this up as the sum of an infinite number of infinite series.

$$\left(\frac{1}{7} + \frac{1}{7^2} + \frac{1}{7^3} + \frac{1}{7^4} + \dots\right) + \left(\frac{1}{7^2} + \frac{1}{7^3} + \frac{1}{7^4} + \dots\right) + \left(\frac{1}{7^3} + \frac{1}{7^4} + \dots\right) + \dots$$
 The sum of the first is
$$\frac{\frac{1}{7}}{1 - \frac{1}{7}} = \frac{1}{6}.$$
 The sum of the second is
$$\frac{\frac{1}{49}}{1 - \frac{1}{7}} = \frac{1}{42}$$
 The total sum is
$$\frac{\frac{1}{6}}{1 - \frac{1}{7}} = \frac{7}{36}$$



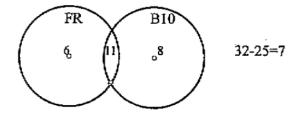
SENIOR B DIVISION

CONTEST NUMBER THREE

FALL 1999

SOLUTIONS

F99SB13. The easiest way to do this is with a Venn diagram



F998B14. $y = 2x^2$ y = -4x + k $2x^2 = -4x + k$ $2x^2 + 4x - k = 0$ This will have 2 identical solutions if the discriminant is 0, 16+8k=0, k=-2

F99SB15. 12250= $2^{1}5^{3}7^{2}$ To be a square all exponents must be even. $x = 2 \cdot 5 = 10$

F99SB16. Let one diagonal = 2x, the other 4x. The area = $\frac{1}{2}2x \cdot 4x = 4x^2$ A side of the

rhombus is
$$\sqrt{x^2 + 4x^2} = \sqrt{5x^2} = \sqrt{\frac{5A}{4}} = \frac{\sqrt{5A}}{2}$$
 Perimeter =4s= $\frac{4\sqrt{5A}}{2} = 2\sqrt{5A}$

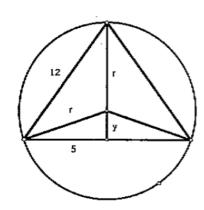
F998B17. The sum of the coefficients can be found by letting x=1. $(3 \cdot 1 - 1)^7 = 2^7 = 128$ F998B18.

$$h = \sqrt{144 - 25} = \sqrt{119}$$

$$r^{2} = y^{2} + 25 = 25 + (h - r)^{2} = 25 + h^{2} - 2hr + r^{2}$$

$$2hr = 25 + h^{2} = 25 + 119 = 144$$

$$r = \frac{144}{2h} = \frac{72}{\sqrt{119}} = \frac{72\sqrt{119}}{119}$$



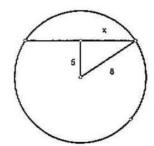
SENIOR B DIVISION

CONTEST NUMBER FOUR

FALL 1999

SOLUTIONS

F99SB19. $x = \sqrt{39}$ chord= $2\sqrt{39}$



F99SB20.

$$p^3q + pq^3 = pq(p^2 + q^2)$$

$$p^{2} + q^{2} = (p+q)^{2} - 2pq = \left(\frac{11}{3}\right)^{2} - 2\left(\frac{4}{3}\right) = \frac{121}{9} - \frac{8}{3} = \frac{97}{9}$$

$$pq(p^2+q^2)=\frac{4}{3}\times\frac{97}{9}=\frac{388}{27}$$

F99SB21. Let the edges be a, b and c

ab=20 bc=25 ac=80

$$a^2b^2c^2 = 4 \times 5 \times 5 \times 5 \times 16 \times 5$$

 $abc = 8 \times 5 \times 5 = 200$

F99SB22. Using a 30-60-90 triangle a side of the hexagon is $2 \times 4\sqrt{3} = 8\sqrt{3}$

Area of hexagon=
$$\frac{3}{2}s^2\sqrt{3} = \frac{3}{2}192\sqrt{3} = 288\sqrt{3}$$

F99SB23. $\sin 195^\circ = \sin(150 + 45) = \sin 150\cos 45 + \cos 150\sin 45$

$$= \frac{1}{2} \cdot \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2} - \sqrt{6}}{4}$$

F99SB24. The minute hand moves 12 times as fast as the hour hand. If the minute hand

moves 12x°, the hour hand moves x° 12x-x=90 11x=90
$$x = \frac{90}{11}$$
 12x = $\frac{12 \cdot 90}{11}$

Since
$$6^{\circ} = 1$$
 minute, the answer is $\frac{(90)(12)}{(11)(6)} = \frac{180}{11} = 16\frac{4}{11} = 16:22$ after 12

SENIOR B DIVISION

CONTEST NUMBER FIVE

FALL 1999

SOLUTIONS

F99SB25. Let $\frac{x}{8}$ be the portion the man does, $\frac{x}{6}$ his wife.

$$\frac{x}{8} + \frac{x}{6} = 1 \rightarrow 7x = 24 \rightarrow x = \frac{24}{7}$$

F99SB26. (x+y)(x-y)=45. The pairs of numbers whose product is 45 are 1×45 , 3×15 , 5×9 These produce (23,22),(9,6) and (7,2)

F99SB27. $tan(A+B) = \frac{\frac{1}{4} + \frac{3}{4}}{1 - \frac{1}{4} \cdot \frac{3}{4}} = \frac{1}{\frac{13}{16}} = \frac{16}{13}$ C=180-(A+B) tanC=tan(180-(A+B))

=-tan(A+B) tanC=
$$\frac{-16}{13}$$

F99SB28. The x^4 term is ${}_{7}C_4x^4(-2)^3 = -280x^4$

F99SB29. The powers of 7 end in the digits 7,9,3,1 and repeat in cycles of 4. Since 73 is 1 more than a multiple of 4, $(37)^{75}$ ends with a 7.

F99SB30.

$$3b^3 + 5b^2 + 3b + 1 = (5b + 1)^2 = 25b^2 + 10b + 1$$

$$3b^3 - 20b^2 - 7b = 0$$

$$b(3b+1)(b-7) = 0$$

b=7 is the only possible answer.