SENIOR B DIVISION

CONTEST NUMBER ONE

PART I: TIME 10 MINUTES

SPRING 1999

S99B1 Compute the number of diagonals that can drawn in a polygon with 12 sides.

S99B2 How many ounces of pure acid should be added to 12 ounces of a solution which is 30% acid to make the solution 40% acid?

PART II: TIME 10 MINUTES

SPRING 1999

S99B3 Compute the sum of the reciprocals of the roots of $2x^2 - 7x - 10 = 0$.

S99B4 In a circle with radius 8, two parallel chords are drawn on opposite sides of the center, each one 4 units from the center. Compute the area of the region in the circle between the two chords in terms of π .

PART III: TIME 10 MINUTES

SPRING 1999

S99B5 Compute $21^3 - 3(21)^2(19) + 3(21)(19)^2 - 19^3$

S99B6 Find the largest integral value of N for which 2" is a factor of 50!

ANSWERS

- 1. 54
- 3. $\frac{-7}{10}$

5. 8

- 2. 2
- 4. $32\sqrt{3} + \frac{64\pi}{3}$
- 6. 47

SENIOR B DIVISION

CONTEST NUMBER TWO

PART I: TIME 10 MINUTES

SPRING 1999

S99B7 The 6 digit number 296,8x7 is divisible by 11. Compute x.

S99B8 A circle is inscribed in a right triangle with legs 3 and 4. Compute the radius of the circle.

PART II: TIME 10 MINUTES

SPRING 1999

S99B9 Solve for all real values of x:

$$\sqrt[3]{x} = \frac{6}{5 + \sqrt[3]{x}}$$

S99B10 Bill and Hillary take turns flipping a fair coin, with the first person to flip a head is the winner. If Bill flips the coin first, find the probability that he wins.

PART III: TIME 10 MINUTES

SPRING 1999

S99B11 Solve for x:

$$\log_{10} x = 2 - 2\log_{10} 2.$$

S99B12 An isosceles triangle has legs of length 2 and vertex angle 36°. Compute the length of the base.

	ANSWERS	3	
7.5	9. 1, -216	11. 25	
8. 1	10. $\frac{2}{3}$	12. −1 + √5	

SENIOR B DIVISION

CONTEST NUMBER THREE

PART I: TIME 10 MINUTES

SPRING 1999

S99B13 Compute the number of 2 digit prime numbers with exactly one digit equal to 7.

S99B14 In right triangle ABC, CD is the altitude to hypotenuse AB. If AC = 6 and DB = 5, compute the area of $\triangle ABC$.

PART II: TIME 10 MINUTES

SPRING 1999

S99B15 The first 4 terms of an arithmetic progression are a, x, b, 4x. Compute $\frac{a}{b}$.

S99B16 Compute the number of digits in the number 416 520 when it is expanded.

PART III: TIME 10 MINUTES

SPRING 1999

S99B17 Solve for all real values of x:

$$|x-3| + |x-5| = 2$$

S99B18 Find all values of x, $0^{\circ} \le x \le 180^{\circ}$ which satisfy $\cos 2x \cos 3x - \sin 2x \sin 3x = 0$.

ANSWERS

- 13. 8
- 15. $\frac{-1}{5}$
- 17. $3 \le x \le 5$

- 14. 9√5
- 16. 24
- 18. 18, 54, 90, 126, 162

SENIOR B DIVISION

CONTEST NUMBER FOUR

PART I: TIME 10 MINUTES

SPRING 1999

S99B19 Solve for x: $x^{-2/3} = \frac{16}{9}$

S99B20 Compute the number of 3 digit integers which have an odd number of positive integral factors.

PART II: TIME 10 MINUTES

SPRING 1999

S99B21 Four positive integers, when added 3 at a time, yield sums of 100, 94, 89 and 80. Find the 4 numbers.

S99B22 Compute the area of a triangle with integral sides whose perimeter is 8.

PART III: TIME 10 MINUTES

SPRING 1999

S99B23 Compute the 1999th digit to the right of the decimal point in the decimal expansion of $\frac{1}{13}$.

S99B24 Three dice are thrown and their sum is 6. Compute the probability that all 3 dice landed on 2.

ANSWERS

19.
$$\frac{27}{64}$$

22.
$$2\sqrt{2}$$

24.
$$\frac{1}{10}$$

SENIOR B DIVISION

CONTEST NUMBER FIVE

PART I: TIME 10 MINUTES

SPRING 1999

S99B25 If $\log_5(\log_4(\log_3 x))=0$, compute x.

S99B26 AB is the diameter of a circle with radius 4. Equilateral triangle ABC is drawn, and BC intersects the circle at D. Compute the length of AD.

PART II: TIME 10 MINUTES

SPRING 1999

S99B27 Find the x intercept of the line joining (-1,1) and (3,9).

S99B28 Compute (1+tan 5°)(1+tan 40°).

PART III: TIME 10 MINUTES

SPRING 1999

S99B29 A regular polygon contains interior angles of 162°. Compute the number of sides of the polygon.

S99B30 Five different numbers are chosen from the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

Compute the probability that the middle number (third largest) is 5.

ANSWERS

25. 81

27. -3/2

29. 20

26. 4√3

28. 2

30. $\frac{5}{21}$

SENIOR B SOLUTIONS SPRING, 1999 CONTEST ONE

S99B1 A diagonal can be drawn from any vertex to any other vertex except itself and the two

adjacent to it.
$$d = \frac{N(N-3)}{2} = 54$$

S99B3
$$\frac{1}{r_1} + \frac{1}{r_2} = \frac{r_1 + r_2}{r_1 r_2} = \frac{\frac{7}{2}}{\frac{-10}{2}} = \frac{-7}{10}$$

S99B4 Since 30° - 60° - 90° triangles are formed each chord is $8\sqrt{3}$ and the area of each triangle is

$$\frac{1}{2}(4)(8\sqrt{3}) = 16\sqrt{3}$$

The area of each sector is $\frac{1}{6}(64\pi)$.

Total area is
$$2(16\sqrt{3}) + 2\left(\frac{32\pi}{3}\right) = 32\sqrt{3} + \frac{64\pi}{3}$$

S99B5 The given number is $(21-19)^3 = 8$.

S99B6 There are 25 even numbers that are factors of 50!. 12 numbers are divisible by 4 and give a second factor of 2. 6 numbers are multiples of 8, 3 are multiples of 16, and 1 is a multiple of 32. Therefore, 25 + 12 + 6 + 3 + 1 = 47.

SENIOR B SOLUTIONS SPRING, 1999 CONTEST TWO

S99B7
$$2+6+x=9+8+7-11$$

 $x=5$

S99B8

$$7 - 2r = 5$$
$$r = 1$$

S99B9 Let
$$y = \sqrt[3]{x}$$

 $5y + y^2 = 6$ $y^2 + 5y - 6 = 0$
 $y = 1$ $y = -6$
 $\sqrt[3]{x} = 1$ $x = 1$ $\sqrt[3]{x} = -6$ $x = -216$

S99B10 The probability is $\frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}$

$$S = \frac{a}{1 - r} = \frac{\frac{1}{2}}{1 - \frac{1}{4}} = \frac{2}{3}$$

S99B11
$$\log_{10} x = \log_{10} 100 - \log_{10} 2^2 = \log_{10} \frac{100}{4} = \log_{10} 25$$

 $x = 25$

S99B12

Bisect one base angle. Similar triangles are formed.

$$\frac{2}{x} = \frac{x}{2-x} \qquad x^2 = 4 - 2x$$
$$x^2 + 2x - 4 = 0$$
$$x = \frac{-2 \pm \sqrt{20}}{2}$$

Reject the negative.

$$x = -1 + \sqrt{5}$$

SENIOR B SOLUTIONS SPRING, 1999 CONTEST THREE

S99B13 The numbers are 17, 37, 47, 67, 71, 73, 79,97. 8 numbers in all.

$$\frac{x}{6} = \frac{6}{x+5} \qquad x^2 + 5x - 36 = 0$$

$$x = 4$$

$$\frac{4}{h} = \frac{h}{5} \qquad h = \sqrt{20}$$

$$A = \frac{1}{2}\sqrt{20}(9) = 9\sqrt{5}$$

S99B15 Let the common difference be d. Then, 4x - x = 2d or $d = \frac{3x}{2}$.

$$a = -\frac{x}{2}$$
, $b = \frac{5x}{2}$. $\frac{a}{b} = -\frac{1}{5}$.

S99B16
$$4^{16}5^{20} = 2^{32}5^{20} = 2^{12}10^{20}$$

 $2^{12} = 4096$ which has 4 digits. $2^{12} \cdot 10^1$ has 5. $2^{12} \cdot 10^2$ has 6. $2^{12} \cdot 10^{20}$ has 24.

S99B17 If
$$x \ge 5$$
, equation becomes $x - 3 + x - 5 = 2$
 $x = 5$
If $x \le 3$, $3 - x + 5 - x = 2$, $x = 3$.
Between 3 and 5, $x - 3 + 5 - x = 2$
 $2 = 2$ all x will work.
 $3 \le x \le 5$

S99B18
$$cos(2x + 3x) = 0$$

 $cos(5x) = 0$
This will work if $5x = 90$, $5x = 270$, $5x = 450$, etc. and $x = 18$, 54 , 90 , 126 , and 162 in the given interval.

SENIOR B SOLUTIONS SPRING, 1999 CONTEST FOUR

S99B19
$$(x^{-2/3})^{-3/2} = \left(\frac{16}{9}\right)^{-3/2}$$
 $x = \frac{27}{64}$

S99B20 Perfect squares, and only perfect squares, have an odd number of factors. Since the smallest 3 digit square is $100 = 10^2$ and the largest is $961 = 31^2$, there are 22 in all.

S99B21
$$A + B + C = 100$$
 $3(A + B + C + D) = 363$
 $A + B + D = 94$ $A + C + D = 89$ $A = 41, B = 32, C = 27, D = 21$
 $A + C + D = 80$

S99B22 The triangle must have sides 3, 3, 2. (No other triangle fits the description.)

$$A = \frac{1}{2}(2)\sqrt{8} = \sqrt{8} = 2\sqrt{2}$$

S99B23
$$\frac{1}{13} = .076923$$
 Since $1999 = 1 \pmod{6}$ (leaves a remainder of 1 when divided by 6)

The decimal is the same as the first digit, which is 0.

S99B24 The only possibilities are $\{1, 2, 3\}$ which has 6 ways of occurring, or $\{2, 2, 2\}$ which has only 1 way, or $\{1, 1, 4\}$ which has 3 ways. Probability is $\frac{1}{1+3+6} = \frac{1}{10}$

SENIOR B SOLUTIONS SPRING, 1999 CONTEST FIVE

S99B25 5° =
$$\log_4(\log_3 x)$$
 4¹ = $\log_3 x$
3⁴ = x $x = 81$

S99B26

$$AD = 4\sqrt{3}$$

S99B27 The equation of the line is y - 9 = 2(x - 3) or y = 2x + 3When y = 0, x = -3/2.

S99B28
$$\tan 45 = 1 = \tan(40 + 5) = \frac{\tan 40 + \tan 5}{1 - \tan 40 \tan 5}$$

 $1 = \tan 40 + \tan 5 + \tan 5\tan 40$
 $(1 + \tan 5)(1 + \tan 40) = 1 + \tan 40 + \tan 5 + \tan 5\tan 40 = 1 + 1 = 2$

S99B29
$$162 = \frac{180(N-2)}{N}$$
 $18N = 360$ $N = 20$

S99B30 Since 5 is the third largest, 2 numbers must be picked from {1, 2, 3, 4} and 2 from {6, 7, 8, 9, 10}.

$$P = \frac{{}_{4}C_{2} \cdot {}_{5}C_{2}}{{}_{10}C_{5}} = \frac{610}{252} = \frac{5}{21}$$