SENIOR B DIVISION

CONTEST NUMBER ONE

PART I: TIME 10 MINUTES

SPRING 1997

- S97B1 Find the absolute value of the difference between the roots of $x^2 + 8x + 1 = 0$.
- S97B2 Alone, a man can do a job in 8 minutes. Together, the man and his son can do the job in 2 minutes. How long, in minutes, would it take the son to do the job alone?

PART II: TIME 10 MINUTES

SPRING 1997

- S97B3 Solve for all values of x: $x+\sqrt{x+1}=5$.
- S97B4 Two circles have radii 2 and 3, and the distance between their centers is 15. Compute the length of their common internal tangent.

PART III: TIME 10 MINUTES

SPRING 1997

S97B5 In terms of x, compute the area of an isosceles right triangle with perimeter x.

S97B6 If $\left(a + \frac{1}{a}\right)^2 = 5$ and a is positive, compute the value of $a^3 + \frac{1}{a^3}$.

ANSWERS

1.
$$\sqrt{60}$$
 or $2\sqrt{15}$

$$5.\frac{x^2(3-2\sqrt{2})}{4}$$

2.
$$\frac{8}{3}$$

4.
$$\sqrt{200}$$
 6. $2\sqrt{5}$

6.
$$2\sqrt{5}$$

or $10\sqrt{2}$

SENIOR B DIVISION

CONTEST NUMBER TWO

PART I: TIME 10 MINUTES

SPRING 1997

S97B7 Compute the area of the largest triangle which can be inscribed in a semicircle with radius 5?

S97B8 Compute the sum of the coefficients of the expansion of $(x-3)^{10}$.

PART II: TIME 10 MINUTES

SPRING 1997

S97B9 A man drove a distance of 144 miles. If he had driven 6 miles per hour faster, he could have made the trip in 20 minutes less time. How fast did he drive?

S97B10 In how many different ways can 6 charms be arranged on a circular bracelet?

PART III: TIME 10 MINUTES

SPRING 1997

S97B11 A 25 foot ladder is placed against a vertical wall. The foot of the ladder is 15 feet from the wall. If the foot is pulled 9 more feet away from the wall, how far down the wall does the top of the ladder slip?

S97B12 $\frac{x}{y} + \frac{x}{y^2} + \frac{x}{y^3} + \dots$ is an infinite series with a sum of $\frac{1}{3}$. If x and y are one digit positive integers, find all possible ordered pairs (x,y).

ANSWERS

7. 25

8. 1024

9, 48

10, 60

11. 13

12. (1,4), (2,7)

SENIOR B DIVISION

CONTEST NUMBER THREE

PART I: TIME 10 MINUTES

SPRING 1997

- At a party, 66 handshakes are exchanged. If everyone shakes hands S97B13 with everyone else, how many people were at the party?
- Compute the value of $\sqrt{1+\sqrt{1+\sqrt{1+\dots}}}$ S97B14

PART II: TIME 10 MINUTES

SPRING 1997

- If $4x^2 + 4x + y^2 + 6y = -10$, find the ordered pair (x,y). S97B15
- The denominator of $\frac{\sqrt{2}}{\sqrt{2}+\sqrt{3}-\sqrt{5}}$ is rationalized, and the new S97B16 denominator is 6. Find the numerator of the new fraction.

PART III: TIME 10 MINUTES

SPRING 1997

- The diagonals of a rectangle intersect at a point which is 5 inches closer S97B17 to the length than to the width. If the perimeter of the rectangle is 76, find the area of the rectangle.
- How many integral solutions exist for $(x^2 x 1)^{(x^2 10x + 24)} = 1$? S97B18

ANSWERS

15.
$$\left(\frac{-1}{2}, -3\right)$$
16. $3+\sqrt{6}+\sqrt{15}$

14.
$$\frac{1+\sqrt{5}}{2}$$

$$3+\sqrt{6}+\sqrt{1}$$

SENIOR B DIVISION

CONTEST NUMBER FOUR

PART I: TIME 10 MINUTES

SPRING 1997

- S97B19 Bob is three times as old as Bill. Twelve years ago, Bob was six times as old as Bill. How old is Bob now?
- S97B20 Nine square tiles are placed on a 3x3 larger square. Three of these tiles are chosen at random. Compute the probability that they are in a horizontal, vertical, or diagonal row.

PART II: TIME 10 MINUTES

SPRING 1997

- S97B21 The points (-3,1), (5,-2) and (7,k) lie on a straight line. Compute the value of k.
- S97B22 If xy = 7 and $\frac{1}{x^2} + \frac{1}{y^2} = 9$, compute the value of $(x+y)^2$.

PART III: TIME 10 MINUTES

SPRING 1997

- S97B23 An equilateral triangle with area 18 is inscribed in a circle. Compute the area of the circle.
- S97B24 Written in base b, $(34)^2_{\text{base b}} = 1277_{\text{base b}}$. Compute b.

ANSWERS

21.
$$\frac{-11}{4}$$

23.
$$\frac{24\pi}{\sqrt{3}}$$
 or $8\pi\sqrt{3}$

20.
$$\frac{2}{21}$$

SENIOR B DIVISION

CONTEST NUMBER FIVE

PART I: TIME 10 MINUTES

SPRING 1997

S97B25 If (3!)(5!)(7!) = (b!), compute b.

S97B26 Compute the average of the first 100 odd integers.

PART II: TIME 10 MINUTES

SPRING 1997

S97B27 If $4^{x+y} = 32$ and $32^{y-x} = 4$, compute the product xy.

S97B28 How many ounces of water must be evaporated from 20 ounces of a 4% acid solution to make a 6% acid solution?

PART III: TIME 10 MINUTES

SPRING 1997

S97B29 Compute the product
$$\left(1 - \frac{1}{4}\right) \left(1 - \frac{1}{5}\right) \left(1 - \frac{1}{6}\right) \left(1 - \frac{1}{7}\right) ... \left(1 - \frac{1}{100}\right)$$
.

S97B30 The medians to the legs of a right triangle are 4 and 7 respectively. Compute the length of the hypotenuse.

ANSWERS

27.
$$\frac{609}{400}$$

29.
$$\frac{3}{100}$$

28.
$$6\frac{2}{3}$$

SENIOR B SOLUTIONS SPRING, 1997 CONTEST ONE

S97B1
$$\frac{-8+\sqrt{60}}{2} - \left(\frac{-8-\sqrt{60}}{2}\right) = \sqrt{60} \text{ or } 2\sqrt{15}.$$

S97B2
$$\frac{2}{8} + \frac{2}{x} = 1$$
. $x = \frac{16}{6} = \frac{8}{3}$

S97B3 $\sqrt{x+1}=5-x$. $x+1=25-10x+x^2$. x=8,3. But 8 does not check. Therefore, x=3.

$$x^2 + 5^2 = 15^2$$
.

S97B4
$$x = \sqrt{200}$$
.

$$BC = OA = \sqrt{200}$$
.

S97B5
$$\begin{cases} 2r + r\sqrt{2} = x, & r = \frac{x}{2 + \sqrt{2}}. \\ A = \frac{r^2}{2} = \frac{x^2}{12 + 8\sqrt{2}} = \frac{x^2(3 - 2\sqrt{2})}{4}. \end{cases}$$

S97B6
$$a + \frac{1}{a} = \sqrt{5}$$
, $a^2 + 2 + \frac{1}{a^2} = 5$. $a^2 + \frac{1}{a^2} = 3$.

$$\left(a + \frac{1}{a}\right)\left(a^2 + \frac{1}{a^2}\right) = 3\sqrt{5} = a^3 + a + \frac{1}{a} + \frac{1}{a^3} = a^3 + \sqrt{5} + \frac{1}{a^3}$$
.
$$a^3 + \frac{1}{a^3} = 3\sqrt{5} - \sqrt{5} = 2\sqrt{5}$$
.

SENIOR B SOLUTIONS SPRING, 1997 CONTEST TWO

S97B7 The largest triangle will have the diameter as its base and the perpendicular radius as its height. $A = \frac{1}{2} \cdot 5 \cdot 10 = 25$.

S97B8 Using x = 1, the sum of the coefficients is $(1 - 3)^{10} = (-2)^{10} = 1024$.

S97B9 Let x = rate. Since $\frac{D}{R} = T$, $\frac{144}{x} = \frac{144}{x+6} + \frac{1}{3}$. Clearing the fractions, $x^2 + 6x - 2592 = 0$. x = 48.

S97B10 The number of ways N objects can be arranged in a circle is (N - 1)!However, since a charm bracelet can be turned over, the number is $\frac{5!}{2} = 60$.

S97B11 The top slips 13 feet.

S97B12 Using the sum of an infinite series, $\frac{1}{3} = \frac{y}{1 - \frac{1}{y}} = \frac{x}{y - 1}$. Since x and y are

one digit integers, $\frac{1}{4}$ and $\frac{2}{7}$ are the only possibilities. (1,4) and (2,7).

SENIOR B SOLUTIONS SPRING, 1997 CONTEST THREE

S97B13
$$66 = \frac{N(N-1)}{2}$$
. $N = 12$.

S97B14
$$x = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}$$
 $x = \sqrt{1 + x}$. $x^2 = 1 + x$. $x^2 - x - 1 = 0$. $x = \frac{1 + \sqrt{5}}{2}$. (negative answer is rejected)

S97B15
$$4x^2 + 4x + y^2 + 6y = -10, 4x^2 + 4x + 1 + y^2 + 6y + 9 = 0,$$

 $(2x + 1)^2 + (y + 3)^2 = 0.$ $(\frac{-1}{2}, -3).$

S97B16
$$\frac{\sqrt{2}}{\sqrt{2} + \sqrt{3} - \sqrt{5}} \cdot \frac{\sqrt{2} + \sqrt{3} + \sqrt{5}}{\sqrt{2} + \sqrt{3} + \sqrt{5}} = \frac{2 + \sqrt{6} + \sqrt{10}}{2\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}} = \frac{2\sqrt{6} + 6 + 2\sqrt{15}}{12} = \frac{3 + \sqrt{6} + \sqrt{15}}{6}.$$

S97B17
$$P = 2(2x) + 2(2[x - 5])$$
. $4x + 4x - 20 = 76$. $8x = 96$. $x = 12$. $A = 24.14 = 336$.

S97B18 If
$$x^2 - x - 1 = 1$$
, $x^2 - x - 2 = 0$, $x = 2$, -1.
If $x^2 - 10x + 24 = 0$, $x = 6$, 4.
If $x^2 - x - 1 = -1$, $x^2 - x = 0$, $x = 0$, 1.
But, the exponent is only even if $x = 0$, not if $x = 1$. Therefore, the solutions are 0, -1, 2, 4, 6.

SENIOR B SOLUTIONS SPRING, 1997 CONTEST FOUR

S97B19
$$3x - 12 = 6(x - 12)$$
. $x = 20$. $3x = 60$.

$$P = \frac{8}{{}_{9}C_{3}} = \frac{8}{84} = \frac{2}{21}$$

S97B21 The slope of
$$AB =$$
the slope of BC .

$$\frac{3}{-8} = \frac{k+2}{2}$$
. $k = \frac{-11}{4}$.

S97B22
$$(x+y)^2 = x^2 + 2xy + y^2$$
. $\frac{1}{x^2} + \frac{1}{y^2} = 9$. $\frac{x^2 + y^2}{x^2 y^2} = 9$. $\frac{x^2 + y^2}{49} = 9$. $x^2 + y^2 = 441 \cdot (x + y)^2 = 441 + 2(7) = 455$

S97B23 It is easiest to find the ratio of the areas of a circle and its inscribed
$$s=r\sqrt{3}$$
.

equilateral triangle.
$$A = \frac{\left(r\sqrt{3}\right)^2}{4} \cdot \sqrt{3} = \frac{3}{4} \cdot r^2 \sqrt{3}.$$

$$\frac{Area_{mangle}}{Area_{circle}} = \frac{\frac{3}{4} \cdot r^2 \sqrt{3}}{\pi r^2} = \frac{3\sqrt{3}}{4\pi}.$$

$$\frac{18}{x} = \frac{3\sqrt{3}}{4\pi}. \quad x = \frac{72\pi}{3\sqrt{3}} = \frac{24\pi}{\sqrt{3}}.$$

S97B24
$$(3b+4)^2 = b^3 + 2b^2 + 7b + 7$$
.
 $9b^2 + 24b + 16 = b^3 + 2b^2 + 7b + 7$
 $b^3 - 7b^2 - 17b - 9 = 0$.
 $(b+1)(b+1)(b-9) = 0$. $b=9$ is the only possible answer.

SENIOR B SOLUTIONS SPRING, 1997 CONTEST FIVE

S97B25
$$(3!)(5!)(7!) = 3 \cdot 2 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 = 10!$$

S97B26 The sum =
$$\frac{100}{2}(1+199)=50 \cdot 200=10,000$$
. $\frac{10,000}{100}=100$.

S97B27
$$2^{2(x-y)} = 2^{5} \quad 2x+2y=5 \quad 10x+10y=25$$
$$2^{5(y-x)} = 2^{2} \quad 5y-5x=2 \quad -10x+10y=4$$

Solving for x and y, we obtain,
$$x = \frac{21}{20}$$
 and $y = \frac{29}{20}$, thus $xy = \frac{609}{400}$.

S97B28 Let x = amount of water to be evaporated.

$$.04(20) = .06(20 - x)$$
. $x = 6\frac{2}{3}$.

S97B29
$$\frac{3}{4} \cdot \frac{4}{5} \cdot \frac{5}{6} \cdot \frac{6}{7} \cdots \frac{99}{100} = \frac{3}{100}$$
.

S97B30
$$x^2 + (2y)^2 = 4^2$$

 $(2x)^2 + y^2 = 7^2$
 $5x^2 + 5y^2 = 65$
 $4x^2 + 4y^2 = c^2 = 52$
Thus, $c = \sqrt{52}$.

