
Spring, 1985 - Senior A  - 1 - Questions 

S85S1 
Numbers a and b can be represented by 2-digit decimal numbers, one having the same 
digits as the other in reverse order. The difference a-b has the digit 5. What is the other 
digit? 

S85S2 

A sequence xn  has the property that x x1 1000 0   and x
x x

n
n n


 1 12

3
. Find x500 . 

S85S3 

Find all values of   between 0  and 180  such that csc cot cos cos     b gb g1 23 . 

S85S4 
Point O is the center of a circle circumscribing triangle ABC. A second circle, passing 
through points A, B and O is tangent to line BC. If m ABC  20 , find the degree-
measure of ABC . 

S85S5 
A father is as old in years as his son was in months when the father was 9 times as old as 
the son. The father is now 26 years and 8 months older than the son. How many years old 
is the father? 

S85S6 

Let f xbg be a real polynomial in x  such that f x f xx3 4c h bg  for all x , and f ( )1 2 . 

Find f 2bg. 

Answers 
1. 4 
2. 0 
3. 67 113 , ; both required 
4. 80 or 80  
5. 40 
6. 8 
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S85S7 

Let E and F be the midpoints of sides AB  and CD  respectively of the square ABCD, 

which has sides of unit length. Denote by G the intersection of line DE  and diagonal 
AC , and let H be the intersection of line BF  and AC . Calculate the length of GH . 

S85S8 

Find the smallest positive value of m  such that the solutions (for x ) of 
x x

x
m

2 1 
  

are real numbers. 

S85S9 
The first term of a geometric progression is i , and the fifth term is 4 3 i . The third term 
is a bi , where a  and b  are real numbers and a  0 . Find the ordered pair (a,b). 

S85S10 

For all real numbers x, f x x xbg b g    2 2
25 1 25 . If the minimum value of f xbg 

is a , find a. 

S85S11 
A line whose equation is y = mx + b passes through the point (1,1) and intersects the line 
x – 5y + 23 = 0 at point A. It intersects the line x – 5y + 11 = 0 at point B. The midpoint 
of segment AB lies on the line 2x – y = 2. Find the ordered pair (m,b). 

S85S12 
A sequence  ai  of integers in decimal notation is formed as follows: a1 2 , ai  the 
last integer such that a ai i  1  and the product of the digits of ai  is prime (1 is not 
prime). If ai  has but one digit we take ai  itself to be the product of its digits. Evaluate 
a a61 60 . 

Answers 

7. 
2

3
 

8. 3 
9. (1.2) 
10. 101 
11. (1.5,-.5) or equivalent ordered pair 
12. 40,001 
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S85S13 
Two sides of an isosceles triangle are tangent to a semicircle of radius 10, and the base of 
the triangle contains the diameter of the semicircle. Find the smallest possible area for the 
triangle. 

S85S14 

Find the units digit in the base 10 decimal representation of 3 33
3

33

33



FHIKF
HG

I
KJ. 

S85S15 
Point F is chosen inside regular pentagon ABCDE so that triangle CDF is equilateral. 
Find the degree-measure of angle BFE. 

S85S16 
The positive integers p and q are both less than 10. How many quadratic equations of the 
form x px q2 0   have positive integers for all their roots? 

S85S17 

Find all real numbers x such that 3 4 7   x x . 

S85S18 
For all right triangles with hypotenuse of length k, the largest possible value of the radius 

of the inscribed circle can be expressed explicitly in terms of k as k a b 2d i. Find the 

ordered pair (a,b) of rational numbers. 

Answers 
13. 200 
14. 7 
15. 168 or 168  
16. 13 
17. 16 
13. (-.5,.5) or equivalent 
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S85S19 

The finite sequence S a a a an 0 1 2, , ,...,  is constructed in such a way that the number 
ai  is the number of elements of S which are equal to i. Find the sum a a a a0 1 2 9   ... . 

S85S20 
Find all (positive) prime numbers which are 27 less than the cube of an integer. 

S85S21 
If each angle of triangle ABC is no smaller than 50 , find the degree measure of the 
largest possible angle the triangle can contain. 

S85S22 

A function is defined on the set of positive integers as follows: f 1 1bg  and 

f n f n f n   1 2 1b g bg bg  for all odd n; f n f n f n    1 2 2 3b g bg bg  for all even 

n. 
Find f 101b g. 

S85S23 
Line segments OA, OB, OC are non-coplanar. Points A’ and B’ are chosen on segments 
AO and BO respectively such that A’O:AO = 1:2 and B’O:BO = 1:3. Point C’ is chosen 

on ray OC  so that the volumes of tetrahedron OABC, OA’B’C’ are equal. Find the 
numerical value of the ratio OC’:OC. 

S85S24 
In the right triangle ABC, CM is the median to hypotenuse AB, and CT is an angle 

bisector. If CT = 2 and CM  12 , find the area of triangle ABC. 

Answers 
19. 10 
20. 37 
21. 62 or 62  
22. 10201 
23. 6 or 6:1 
13. 6 
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S85S25 

Find the units digit in the decimal representation of the integer 3 34
4

56

56



FH IKF
HG

I
KJ. 

S85S26 
A chef at a summer camp knows how to prepare only two dishes. He prepares only one 
dish each day. The camp does not allow him to cook the same dish more than twice in a 
row (on two successive days). How many different 10-day menus can he prepare? 

S85S27 
How many two-digit numbers (in decimal notation) are divisible by the product of their 
digits? 

S85S28 
A circle with the center S has radius 1. Triangle ABC is circumscribed about the circle, 
And SA SB SC  . Find the area of the region of the plane in which point A may be 
located. 

S85S29 

Find two natural numbers, both greater than 2500 , whose product is 2 12002  . 

S85S30 
Line segment AB has length 4 units. Two arcs, with centers at A and B and with radius 4, 
intersect at D. Point E is the midpoint of AB, and semicircles with diameters AE and BE 
are drawn on the same side of line AB as D. Point M is the center of a circle tangent to 
these two semicircles and also of arcs AD and BD. Find the length of EM. 

Answers 
25. 1 
26. 178 
27. 5 
28. 3  
29. 2 2 11001 501   

2 2 11001 501   
(both required) 

30. 4 6 5/  
or equivalent 
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S85S1 
The numbers can be represented by 10t u  and 10u t . The difference is then 
9 9 9t u t u  ( ) , and is a multiple of 9. The only suitable multiples of 9 are 45 and 54. 
In either case, the other digit is 4. 

S85S2 
We can write x x xn n n  1 13 2 . From this recursion relation it is clear that the values of 
x1  and x2  determine all the values of the sequence. If we let x2 2 , we find x a3 3 , 

x a4 7 , x a5 15  and an easy induction shows that x an
n 2 11c h. If x2 0 , xn  

cannot be 0. Hence x2 0 , and the sequence is constantly 0. 

S85S3 

csc cot cos
cos

sin
cos

cos

sin

sin

sin
sin cos   


 





  
F

HG
I
KJ  


   b gb g b g1

1
1

1
23

2 2

. 

Therefore    67 113, . (Note that sin  is positive between 0  and 180 .) 

S85S4 

In the second circle, BAO  is inscribed and cuts off arc BO . Angle OBC is a tangent-
chord angle intercepting the same arc. Hence   BAO OBC . Since OA=OB=OC, 
triangles ABO and CBO are thus congruent, so AB=BC. If m ABC  20 , 

m ABC   
1

2
160 80 . 

S85S5 

The father has always been 26
2

3

80

3
  years older than the son. When the son was x 

years old, the father was 9x years old. Hence 8
80

3
x   and x 

10

3
. The father is now 12x 

years old, or 40. 

S85S6 

First let us find the degree of f . If deg f nbg , we have deg xf n3 3c h  and  

deg xx f n4 4bg  , so 3 4n n   and n  2 . Note that f ( )0 0 , so we can write 

f ax bxxbg 2 . Then f x ax bx3 6 5c h  , and b c . Since f 1 2bg , f x xbg 2 2 , and 

f 2 8bg . 
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S85S7 

By similar triangles: 
CF

FD

CH

HG
  and 

AE

EB

AG

GH
 . Since AE = EB and CF = FD, the 

quantities AG, GH, and HC must be equal. Therefor GH AC 
1

3

2

3
. 

S85S8 

We have x
x

m  1
1

, x
x

m  
1

1. Since m > 0, and real solution for x will also be 

greater than 0, we have for x > 0, x
x

 
1

2 . Hence m  3. 

S85S9 

a bi a b g2 2   b abi i i i2 2 4 3 3 4     b g . 

Then a b2 2 3    and 2 4ab   or ab = 2. Trying a = 1, b = 2 works. One can also show 
that this solution is unique. 

S85S10 
Solution 1: 
p q

pq



2

 if p  0  and q  0  

f x x x x xbg b g c hb g        2 2 2 2
25 1 25 2 25 1 25  and of course we have 

equality when p = q, i.e. when x x2 2
25 1 25   b g , i.e. when x x2 2

1 b g, i.e. 

when x x  1b g, i.e. when x  
1

2
 minimum value of 

f x fbg F
HG

I
KJ       

1

2

1

4
25

1

4
25 2

1

4

100

4
101 . a = 101. 

Solution 2: (Using a geometric interpretation) 

f x AX XBbg   we get minimum by considering line AXC. 

S85S11 
A segment with endpoints on two parallel lines has its midpoint on a third line midway 
between them. Hence the midpoint of AB is on the line x y  5 17 0 . Solving 

simultaneous equations 
x y

x y

  
  
5 17 0

2 2 0
, we find the coordinates of this midpoint to be 

(3,4). The line through this point and also (1,1) has equation y x 15 5. . . 



S85S12 
The product of the digits can only be 2,3,5 or 7. In fact, each ai  must consist of one of 
these digits and possibly some digits equal to 1. 
There are 4 1-digit ai  (2,3,5,7) 
 8 2-digit ai  (12,13,…,51,71) 
 12 3-digit ai  (112,…,711) 
 16 4-digit ai  (1112,…,7111) 
 20 5-digit ai  (11112,…,71111) 
 60 
Therefor a60 71111 ,  so a61 111112 ,  and a a61 60 40 001  , . 
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S85S13 
If the triangle is ABC (see diagram) with AC = BC, then OP = OQ = 10, and 

ABC AOC BOC AC BC AC    
1

2
10 10b g . This is minimal when AC is minimal. 

Let  CAO  . Then AP OP/ cot  , while CP OP/ tan  . 
AC AP CP OP OP     cot tan cot tan   10b g. Since tan cot b gb g 1, a 

constant, the sum of these to quantities is minimal when they are equal. This makes 
  45 , and the areas of the right isosceles triangle is 200. 

S85S14 

32  ends in 9  34  ends in 1  34n  ends in 1 for all integers n  0 . Now, 

3 3 3 3 33 3 4 1
4 4

27

1
4

27

2
4

27

26
1

4 133 27 27
27 26 25 26

   


F
HG

I
KJ

F
HG

I
KJ 

F
HG

I
KJ b g ...

n  (for some integer n > 0).  

3 33 4 1 333

  nb g , 34 1nb g ends in 1, 33  ends in 7  3333

ends in 7. 

S85S15 
We have: m BCF m BCD m FCD       108 60 48 , so 

m BCF   
1

2
180 48 66b g , and m ABF       360 66 66 60 360 192 168b g . 

S85S16 

If the quadratic equation x px q2 0    has positive integral roots, then x px q2    

factors into x a x b b gb g, where a and b are positive integers whose sum is p and whose 

product is q. We can count the equations easily by giving q a value, finding pairs of 
factors for q, and noting their sums. 

For q = 1 we have x x2 2 1  . 
For q = 2 we have x x2 3 2  . 
For q = 3 we have x x2 4 3  . 
For q = 4 we have x x2 5 4   and 
 x x2 4 4  . 
For q = 5 we have x x2 6 5  . 
For q = 6 we have x x2 7 6   and 
 x x2 5 6  . 
For q = 7 we have x x2 8 7  . 
For q = 8 we have x x2 9 8   and 
 x x2 6 8  . 
For q = 9 we have x x2 10 9   and 
 x x2 6 9  . 
This makes 13 ordered pairs in all. 



Can you generalize this pattern? 

S85S17 

If a b a b   , then squaring we find ab ab a b  2  and a b  0 . Here, 

3 4 7   x x , so we must have x  3  or x  4 , and x = 9 or 16. Checking, 
we find only x = 16 works. 

S85S18 
We apply the following theorem. 
Thm. For any triangle k = rs, where k is the area of the triangle, r is the inradius, and s  

is the triangles semiperimeter. 
Corollary: If a, b, and c are the sides of a right triangle where c is the hypotenuse, then 

the inradius r
a b c


 

2
. 

If   is an acute angle of our given triangle then the other two sides are k sin  and 

k cos , from which it follows that r
k k k


 sin cos 

2
. 

We need to maximize k k k ksin cos sin cos
sin    

  2 2
2

2
2 , which is clearly 

maximized when   45 . Thus the maximum value of r is 

k k k k
2

2
2

2
2

2 1

2

 


d i
. 
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S85S19 

Since there are 10 elements altogether of the sequence, the sum of the ai ’s must be 10. 

S85S20 
If p is such a prime then for some integer, x, we have that 

p x x x x x x p p            3 3 3 227 3 3 3 9 3 1 1b gc h , , , . If x = p + 3, 

x x2 3 9 1   , so p cannot be prime. If x = p – 3, x x p p2 23 9 3 9      cannot be 
equal 1, so p cannot be prime. A quick check shows that we get a solution if and only if 
x – 3 = 1  x = 4  p   4 27 373 . 

S85S21 
Suppose A  is the largest (with no loss of generality). Then 
         A B C180 180 2 59 62b g b g . 

S85S22 

Let us relate f nbg and f n  2b g if n is odd. Since n + 1 is even, we have: 

f n f n f n   1 2 1b g bg bg  

f n f n f n f n f n f n f n

f n f n

f n f n

f n f n

             

    

    

    

2 1 2 1 2 3 2 1 2 2 1 1

1 2 1 1

1 2 1 1

1 1 2

2 2

2

2 2

b g b g b g bg bg bg bg
bge j bge j
bge j bge j
bge j bge j

 

S85S23 
We use absolute value for both area and volume. Looking at plane ABO, we see that 

ABO

A B O

OA OB A

OA OB A

OA

OA

OB

OB' '

sin

' 'sin ' '





  
1
2

1
2

6

1
.  

Now we look on the plane through OC perpendicular to plane OAB. The ratio 
OC

OC

OP

OP' '
  where P and P’ are the feet of the perpendiculars from C and C’ respectively 

to plane OAB. If the tetrahedra OABC, OA’B’C’ are equal in volume, and the bases 
OA’B’, OAB are in the ratio 1:6 the heights CP’, CP are in the ratio 6:1. 

S85S24 
Let AC = x, BC = y. We want to find xy/2, so we will look for relationships between x 
and y. 



Since CM = AM = BM, the Pythagorean theorem shows that x y2 2 48  . We can get a 
second relation by using the formula for the area of a triangle in terms of two sides and 
the sine of the included angle. Using absolute value for area, we have: 

ABC ACT BCT  , or xy x y/ / /2 2 2  , so that xy x y 2b g. Squaring, 

x y x y xy xy2 2 2 22 4 96 4    c h . Now we let xy/2 = k, the area we want to find. We 

then have:  

4 8 96 0

2 24 0

6 4 0

2

2

k k

k k

k k

  

  

  b gb g
 We reject the negative root. 
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S85S25 

Since 3 814   ends in a 1, 3n  ends in a 1 whenever n is multiple of 4. This is clearly the 
present case. 

S85S26 
It is not hard to see that half of all the possible menus begin with one of the dishes on the 
first day, and the other half with the other dish. Thus we can assume that the first dish is 
“fixed”, count the menus, then multiply by two. Let f nbg represent the number of n-day 

menus the chef can plan, starting with one of the dishes the first day. Clearly f 1 1bg  and 

f 2 2bg . We will express f n 1b g in terms of f nbg and f n 1b g. 

The value of f n 1b g is no less than f nbg, since the chef can always get a permissible 

menu by making the dish for the (n – 1)st day different from that of the day before. He 
has an extra choice, for the (n + 1)st dish, for each time he changed the dish in going 
from the (n – 1)st to the nth day. He can make such a change exactly f n 1b g times. 

Thus f n f n f n   1 1b g bg b g. A quick calculation shows that f 10 89bg , so he has 

178 menus in all. 
This Fibonacci recursion can be proved formally by induction. The diagram below 
provides motivation: 

S85S27 
If the number is 10t + u, and tu divides it, than 10t + u is a multiple of both t and u. 
Hence t divides u, and u divides 10t. Let u = kt. Then kt divides 10t, so k divides 10, or k 
= 1,2,5. For k = 1 we have 10t + u = 11. For k = 2 we have 12, 24, 36. For k = 5 we have 
15, for five solutions in all. 

S85S28 
Intuitively, it is not hard to see A must be closer than a vertex of the equilateral triangle 
circumscribed about circle S. Using this insight, we see that the locus for A is an annulus 

of inner radius 1 and outer radius 2.Its area is  R r2 2 3 c h . 

Let us prove this result. Suppose triangle ABC is a triangle circumscribed about the 
circle, with angles BAC   , CBA   , BCA   . Then, from right triangle SAX, 
sin / / 2 1 SA . Similarly, sin / / 2 1 SB  and sin / / 2 1 SC . Thus the condition 
SA SB SC   means that sin / sin / sin /  2 2 2  , or (since the three half-angles 
are all acute),   / / /2 2 2  , and     . Hence   is at least 60 degrees, and 
SA  1 2 2/ sin / . 
This shows that the point A must lie in the annulus. It is not hard to see that any point in 
the annulus in fact satisfies the conditions of the problem. 



S85S29 
We have  
2 1 2 2 1 2

2 2 2 1 2

2 1 2

2 2 1 2 2 1

2002 2002 1002 1002

2002 1001 1002

1001 2 501 2

1001 501 1001 501

    

    

  

    

c h c h
c hc h

 

To show that the second factor is large enough: 

2 2 1 2 2 2 2 2 2 2 21001 501 1001 501 1000 500 500 500        c h . 

Other solutions may be possible. 

S85S30 
The common centerline of two tangent circles passes through their point of contact. 
Hence AM intersects DB at K, the point of contact of circle M and arc DB. Similarly, if F 
is the midpoint of AE, MF passes through X, the point of contact of circle M and 
semicircle AB. 
Let x = MK, y = ME. We will use right triangles AME, FME to solve for x and y. We 
have: 

AM AK KM x

AE

MF MX XF x

x y

x y

   

   

  

  

4

2

1

4 4

1 1

2 2

2 2

b g
b g

 

Subtracting, we find –10x + 5 = 3, and x = 6/5. It quickly follows that y  4 6 5/ . 
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